
ArrayQL Integration into Code-Generating Database Systems
Maximilian E. Schüle

Technical University of Munich
m.schuele@tum.de

Tobias Götz
Technical University of Munich

tobias.goetz@tum.de

Alfons Kemper
Technical University of Munich

kemper@in.tum.de

Thomas Neumann
Technical University of Munich

neumann@in.tum.de

ABSTRACT
Array database systems offer a declarative language for array-
based access on multidimensional data. Although ArrayQL for-
mulates the operators for a standardised query language, the
corresponding syntax is not fully defined nor integrated in a
productive system. Furthermore, we see potential in a uniform
array query language to fill the gap between linear and relational
algebra.

This study explains the integration of ArrayQL inside a re-
lational database system, either addressable through a separate
query interface or integrated into SQL as user-defined functions.
With a relational database system as the target, we inherit the
benefits such as query optimisation and multi-version concur-
rency control by design. Apart from SQL, having another query
language allows processing the data without extraction or trans-
formation out of its relational form. This is possible as we work
on a relational array representation, for which we translate each
ArrayQL operator into relational algebra. This study provides
an extended ArrayQL grammar specification to address each
ArrayQL operator. In our evaluation, ArrayQL within Umbra
computes matrix operations faster than state of the art database
extensions and outperforms traditional array database systems
on predicate evaluation and aggregations.

1 INTRODUCTION
Array database systems are developed for geo-temporal data and
therefore specialised formultidimensional discrete data (MDD) [3].
Such data occurs within time-series of scientific experiments
or real-world scenarios when processing images or indexing
geographic or astronomical data [9, 17, 57]. These examples
have in common that the tuples can be addressed using a multi-
dimensional index out of coordinates and time [39, 45]. In con-
trast to relational database systems, array database systems are
designed for index-based array access and excel in computing
aggregations on numerical data. Popular array database systems
are RasDaMan [3], MonetDB SciQL [59] and SciDB [7, 11]. As
each one is shipped with its own query language, ArrayQL [30]
is an attempt to standardise them as presented at XLDB 2012.
Although the corresponding algebra [33] has been published, it
is not fully covered by the corresponding draft of a grammar
specification [30] needed in order to implement ArrayQL.

Even though array database systems are often based on rela-
tional ones, an interface for querying both does not exist. For
example, RasDaMan supports relational database systems such
as PostgreSQL as an underlying key-value store but archives the
data as binary large objects (BLOB) only. SciQL is implemented

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-086-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

©«
𝑎1,1 · · · 𝑎1,𝑛
.
.
.

.
.
.

.

.

.
𝑎𝑚,1 · · · 𝑎𝑚,𝑛

ª®®®¬
x y value
1 1 𝑎1,1
.
1 n 𝑎1,𝑛
.
m 1 𝑎𝑚,1
.
m n 𝑎𝑚,𝑛

rowno. col1 . . . coln
1 𝑎1,1 . . . 𝑎1,𝑛
.
m 𝑎𝑚,1 . . . 𝑎𝑚,𝑛

Relational
Representation

Tabular
Representation

Figure 1: Storing arrays as database tables: either us-
ing a tabular representation (left) with the attributes as
columns and an additional one defining the row order or
using a relational representation (right) with the array as
coordinate list.

within MonetDB and stores arrays along with tables in the same
memory layout but does not enable cross-querying. However
a uniform representation is needed to allow access from SQL
and an array query language, Arrays have to be either stored
as a coordinate list (relational representation) or tables have to
carry an additional attribute that defines the row order (tabular
representation, see Figure 1). A relational representation saves
memory on sparse arrays as no entry is needed for values equal
to zero. As the dimensions and the content are mapped to one
attribute each, primitive data types are sufficient even for more
than two dimensions. A tabular representation would require a
nested array datatype to represent the third dimension.

Another use case for array-oriented data processing arises by
the need of matrix operations [52] for data mining [1, 34, 38] and
machine learning [22, 29, 31, 54]. The corresponding data is often
stored and collected inside relational database systems [2, 6, 13,
48, 48], but its analysis depends on linear algebra, which database
systems do not provide. Thus, the data gets extracted into sepa-
rate tools such as R and Python, so analysis happens on past data,
ignoring incoming tuples. We argue that array database systems
are ideally suited for machine learning algorithms [41, 47], which
essentially depend on data stored in tensors and their transfor-
mations [42, 43], making ArrayQL a worthwhile extension.

We claim that relational database systems will highly benefit
from ArrayQL as a further query language, either embedded in
SQL as user-defined functions or as a separate query interface.

We integrate ArrayQL within our code-generating database
system Umbra [23, 36]. We decided in favour of a relational array
representation allowing a direct mapping onto relational algebra
at compile time. This requires an extension of the semantic anal-
ysis only, rather than a change to the underlying query engine.
The extension accepts ArrayQL statements as part of SQL either
as user-defined functions or via a separate interface. As an ad-
vantage, ArrayQL can work on SQL tables, and SQL has access to
ArrayQL arrays. The extension does neither affect runtime nor

the compile time of SQL queries. This study extends preliminary
work about ArrayQL for linear algebra within Umbra [49] by an
ArrayQL grammar specification, its application on real-world
data and a comprehensive evaluation of array database systems.
This study’s specific contributions are:

• an extended grammar definition that supports the full
ArrayQL algebra,

• a relational array representation including bounding boxes
and validity maps for ArrayQL within database systems

• the translation of corresponding operators into relational
algebra,

• the integration of ArrayQL into a code-generating data-
base system with Umbra as target and

• an experimental evaluation using micro-benchmarks for
linear algebra and real-world data for array operations.

This study comprises the following sections: Section 2 sum-
marises existing work about array database systems and data
analysis tools for relational algebra. Section 3 provides a complete
ArrayQL grammar to address the ArrayQL operators. Section 4
presents the architecture when integrating ArrayQL within the
beyond main-memory database system Umbra as the target. Sec-
tion 5 introduces the ArrayQL algebra and its translation into
relational algebra. Section 6 demonstrates the application of Ar-
rayQL in conjunction with SQL and for linear algebra. Section 7
evaluates the proposed extension using micro-benchmarks for
basic matrix algebra, queries on real-world data and the SS-DB
benchmark.

2 RELATEDWORK
Beside the array database systems RasDaMan, MonetDB SciQL
and SciDB, this study considers also efforts towards integration
of matrix algebra [21] into database systems.

2.1 Array Database Systems
Introduced in 1997, RasDaMan [3] was the first array database
system developed for geo-spatial data. Even though it supports
relational database systems as underlying storage engines, it
stores data as BLOBs similar to a file system. Therefore, querying
happens within RasDaMan only, for which it offers the array
query language RasQL, including SQL-92 and embedded state-
ments for multi-dimensional data. These statements access arrays
and have been incorporated in the SQL/MDA:2019 standard1 for
multi-dimensional fields.

SciDB [7] is a database system that uses arrays as a first-class
data model. Its declarative query language AQL is based on SQL
and the array programming language APL. Another array data-
base system is SciQL [59], which uses MonetDB’s query engine
and storage layout. Binary association tables (BAT), normally
used to store columns, hold the array data. This allows one unified
query interface to address either SQL tables or arrays.

2.2 Machine Learning Tools
Matrices are an example of multi-dimensional data. Its algebra
attracts attention by the use for machine learning [12]. For this
purpose, MATLANG [5], Lara [27] or BUDS [14] offer declarative
query languages to produce optimised operator plans. Another
machine learning tool is SystemML [4] that supports linear alge-
bra and optimises query plans using cost models. We work on a
sparse data model, for which sparsity estimation optimises the

1https://www.iso.org/standard/69777.html

query plan [51]. Other work relies on such query plans when
computing partial derivations [50].

2.3 Extensions for Database Systems
MADlib [18] operates on tables in a relational representation,
which they call a sparse matrix, as well as on the array datatype.
Also implemented as a datatype inside database systems, Kern-
ert [25] enable native support for linear algebra on dense and
sparse matrices. However, enabling a separate datatype has the
downside of expensive transformations out of tables.

Luo et al. [32] argue that database systems form an excellent
platform for linear algebra as this kind of computations can be
expressed as a combination of operators within relational algebra.
Due to the complexity of writing linear algebra computations in
SQL and the overhead of the Volcano-style iterator model [15],
they propose adding a vector and matrix datatype as database
attributes and a small set of SQL language extensions for cor-
responding operations. Umbra eliminates the overhead of one
function call per operator introduced by the Volcano-style itera-
tor model as it generates low-level virtual machine (LLVM) code
according to the producer-consumer model [35, 44, 46]. This al-
lows pipelined processing, reduces the cost per tuple significantly
and achieves nearly the performance of a hard-coded implementa-
tion. This study benchmarks the performance increase for linear
algebra within such a code-generating database system in com-
parison to traditional (array) database systems. Although Umbra
provides a datatype to store matrices as a part of relational tables,
this study’s motivation is to provide an array view on tables.

To allow linear algebra directly on database tables, relational
matrix algebra (RMA) [10] extends MonetDB by operators for lin-
ear algebra. The linear operations can be addressed in SQL as table
functions. But in contrast to our study, RMA interprets tables
as matrices (tabular representation), limited to two-dimensional
matrices, and requires a row-ordering as contextual informa-
tion among linear operations. In contrast, SPORES [53] uses
a relational representation for matrices only as an intermedi-
ate format to derive optimisations from relational algebra to
SystemML. When we base our matrices directly on tables and
translate all operations into relational algebra, we earn these
optimisations [16, 19, 26, 55, 58] for free.

3 ARRAYQL GRAMMAR
The syntax draft of 2012 [30] proposed ArrayQL as a data defi-
nition and data query language on arrays as the principle data
model. Common elements with SQL are the keywords and the
syntax to create and access attributes, but in contrast, the state-
ments are extended to specify dimensions. Beside arithmetic
operations and basic array transformations, ArrayQL allows ag-
gregations and joins. We add support for temporal tables, extend
the join functionality and propose the syntax for an extension to
a data modification language. In this section, we introduce the
ArrayQL statements and give a syntax definition in Backus-Naur-
Form (see Figure 2).

3.1 Data Definition Language
As a data definition language, ArrayQL allows the creation of
arrays similar to SQL tables (see Listing 1). A create statement
starts with the keyword CREATE ARRAY followed by the array
name. As arguments inside parentheses, ArrayQL expects the
keyword DIMENSION together with the array bounds and, as in
SQL, the attributes per cell.

https://www.iso.org/standard/69777.html

CREATE ARRAY m (i INTEGER DIMENSION [1:2],
j INTEGER DIMENSION [1:2], v INTEGER);

Listing 1: Array creation statement.

As an alternative, creation is possible out of an existing array
(see Listing 2).
CREATE ARRAY n FROM SELECT [i], [j], v FROM m;

Listing 2: Array creation out of existing array.

We suggest ArrayQL in conjunctionwith SQL insert statements to
allowmixed queries. In conjunctionwith SQL, theArrayQL create
statement allows to create new tables or prepare existing ones
for array-based processing (initialising the bounds and adding
an index on the dimension attributes). When a new array has
been created, SQL can access the corresponding table to insert
elements like bulk-loading from CSV. Afterwards, ArrayQL as a
data query language can process the filled array.

3.2 Data Query Language
ArrayQL is intended as a data query language to access and
aggregate along the array’s dimensions. Similar to SQL, an Ar-
rayQL statement is composed out of a SELECT- and a FROM-clause
and, optionally, one for WHERE and one for GROUP BY (see List-
ing 3). The SELECT-clause expects the indices for the dimensions
(in brackets) as well as arithmetic expressions as attributes that
form the result. The FROM-clause specifies the source array. As its
arguments, arrays or compound statements, such as joins, table-
functions or entire subqueries are allowed. The WHERE-clause
filters each entry by a predicate. The GROUP BY-clause addresses
the dimensions preserved after an aggregation.
SELECT [i], SUM(v)+1 FROM m WHERE v>0 GROUP BY i

Listing 3: Exemplary ArrayQL select statement.

Optionally, the indices can be rearranged, which is indicated by
the dimension names inside brackets behind the source array.
The keyword AS allows renaming of expressions as well as of
input arrays. Filtering and grouping happen similar to SQL: filter
expects a condition inside a WHERE-clause, grouping expects the
dimensions considered for aggregation as part of the GROUP BY-
clause.

In addition to the ArrayQL draft, we propose support of tem-
porary arrays, explicit inner joins and various table functions.
Temporary arrays are introduced by the keyword WITH (see List-
ing 4), similar to temporary tables in SQL.
WITH ARRAY temp AS (SELECT [i] as j, SUM(v+1) FROM m[j] WHERE v

>0 GROUP BY j) SELECT * FROM temp;

Listing 4: Temporary table in ArrayQL.

Inner joins are part of the ArrayQL algebra in Section 5. Ta-
ble functions are needed to apply linear algebra on arrays, and
therefore, discussed in Section 6.

3.3 Data Modification Language
Beside manipulating existing arrays using SQL, we add basic
support for ArrayQL update statements (see Listing 5). An Ar-
rayQL update statement is introduced by UPDATE ARRAY and
expects the array name and the dimensions whose values should
be modified. An ArrayQL select statement or an explicit VALUES-
clause containing the attributes specify the new values. Inside a
VALUES-clause all attributes of one cell are enclosed by brackets.

⟨ArrayQlStmt ⟩ ::= ⟨SelectStmt ⟩
| ⟨CreateStmt ⟩
| ⟨UpdateStmt ⟩

⟨SelectStmt ⟩ ::= ⟨WithArray⟩? ’SELECT’ ⟨ExprList ⟩ ’FROM’ ⟨SubarrayList ⟩
⟨FilterExpr ⟩? ⟨GroupByExpr ⟩?

⟨CreateStmt ⟩ ::= ’CREATE’ ’ARRAY’ ⟨Name⟩ ⟨CreateStyle⟩
⟨CreateStyle⟩ ::= ’FROM’ ⟨SelectStmt ⟩

| ’(’ ⟨ArrayDef ⟩? ’)’
⟨ArrayDef ⟩ ::= ⟨AttrDef ⟩ (’,’ ⟨AttrDef ⟩)*

| ⟨DimDef ⟩ (’,’ ⟨DimDef ⟩)* (’,’ ⟨AttrDef ⟩)*
⟨DimDef ⟩ ::= ⟨Name⟩ ⟨Type⟩ ’DIMENSION’ ’[’ ⟨Min⟩ ’:’ ⟨Max ⟩ ’]’
⟨AttrDef ⟩ ::= ⟨Name⟩ ⟨Type⟩
⟨ExprList ⟩ ::= ⟨SingleExpr ⟩ (’,’ ⟨SingleExpr ⟩)*
⟨SingleExpr ⟩ ::= ⟨Expr ⟩ (’AS’ ⟨Name⟩)?

| ’[’ ⟨Name⟩ ’]’ (’AS’ ⟨Name⟩)?
| ’[’ ⟨Min⟩ ’:’ ⟨Max ⟩ ’]’ ’AS’ ⟨Name⟩
| ⟨AggregationFunction⟩ ’(’ ⟨Name⟩ ’)’

⟨SubarrayList ⟩ ::= ⟨JoinExpr ⟩ (’,’ ⟨JoinExpr ⟩)*
⟨JoinExpr ⟩ ::= ⟨JoinArray⟩ (’AS’ ⟨Name⟩)?

| ⟨SingleSubarray⟩
⟨JoinArray⟩ ::= ⟨SingleSubarray⟩ ’JOIN’ (⟨SingleSubarray⟩ | ⟨JoinArray⟩)
⟨SingleSubarray⟩ ::= ⟨Name⟩ ⟨Alias⟩?

| ⟨Name⟩ ’[’ ⟨Expr ⟩ (’,’ ⟨Expr ⟩)* ’]’ ⟨Alias⟩?
| ⟨Name⟩ ’*’ ⟨Name⟩
| ⟨FunctionName⟩ ’(’ ’)’

⟨WithArray⟩ ::= ’WITH’ ’ARRAY’ ⟨Name⟩ ’AS’ ’(’ ⟨CreateStyle⟩ ’)’ (’,’ ’ARRAY’
⟨Name⟩ ’AS’ ’(’ ⟨CreateStyle⟩ ’)’)*

⟨FilterExpr ⟩ ::= ’WHERE’ ⟨BooleanExpr ⟩
⟨GroupByExpr ⟩ ::= ’GROUP’ ’BY’ ⟨Name⟩ (’,’ ⟨Name⟩)*
⟨UpdateStmt ⟩ ::= ’UPDATE’ ⟨Name⟩ ⟨UpDim⟩* ’(’ ⟨UpExpr ⟩ ’)’
⟨UpDim⟩ ::= ’[’ ⟨Expr ⟩ ’]’

| ’[’ ⟨Min⟩ ’:’ ⟨Max ⟩ ’]’
⟨UpExpr ⟩ ::= ⟨SelectStmt ⟩

| ’VALUES’ ’(’ ⟨Expr ⟩ (’,’ ⟨Expr ⟩)* ’)’ (’,’ ’(’ ⟨Expr ⟩ (’,’ ⟨Expr ⟩)* ’)’)*

Figure 2: ArrayQL grammar in EBNF.

UPDATE ARRAY m [1][1] (select [2][1] ,v FROM m);
UPDATE ARRAY m [1][1:2] (values (1) ,(2));

Listing 5: ArrayQL update statements.

ArrayQL Grammar UDF SQL Grammar

ArrayQL
Interface

SQL
Interface

Abstract Syntax Tree

ArrayQL Analysis SQL Analysis
Semantic
Analysis

Code Generation

LLVM IR

Figure 3: ArrayQL extension in Umbra: ArrayQL state-
ments are parsed via a separate interface or as part of user-
defined functions (UDF) in SQL; a separate file contains
the ArrayQL grammar. An abstract syntax tree is gener-
ated, whereof the ArrayQL statements are analysed sepa-
rately.

4 IN-DATABASE INTEGRATION
This section illustrates the changes made to the database sys-
tem Umbra either in order to accept ArrayQL as user-defined
functions or to offer a separate query interface. Afterwards, we

explain design decisions made to suit the relational concept of a
code-generating database system and to enable cross-querying
without overhead.

4.1 Architecture
Umbra is a code-generating database system following the produ-
cer-consumer concept. First, it transforms the parsed SQL query
into an abstract syntax tree, which is passed to the semantic anal-
ysis to create the operator plan. The operator plan gets optimised
using estimated cardinalities as only the schema is known during
compile-time. Afterwards, a translator class for each operator
generates the LLVM code, for which the traditional tuple-flow is
inversed. So instead of pushing tuples upwards a target operator,
operators demand their sources to produce code. Each source
then demands the parent operator, the consumer, to generate
code for processing each tuple further.

Umbra supports user-defined functions, that are handled sep-
arately during semantic analysis. For each language, a separate
grammar file together with one for its semantic analysis exists.
This is shown in Figure 3: when adding ArrayQL to Umbra, ei-
ther a separate interface accepts ArrayQL statements or they are
parsed as part of a user-defined function in SQL. Afterwards, a
common abstract syntax tree is generated, which is then anal-
ysed separately. Within the semantic analysis, we mostly rely on
standard relational algebra operators, but we are also able to call
customised operators. Because of this, we benefit from query op-
timisation such as operator reordering or predicate push-down.

4.2 Array Representation
Only the schema is known during compile-time, whereas the
tuples can only be accessed during run-time. This interferes with
a tabular array representation, as only the columns are part of
the schema, and leads us to the relational representation. We
store every 𝑛-dimensional array with𝑚 values per cell as a table
with 𝑛 +𝑚 attributes. Stored as a coordinate list, the attributes
for the indices are unique and form the primary key. This allows
their indexing and fast retrieval later on.

ArrayQL differentiates between attributes and dimensions,
which becomes obsolete in a relational representation as dimen-
sions are mapped to attributes internally. This leads to more
flexibility, since arbitrary attributes can be used as dimensions.

According to the ArrayQL algebra, an array consists of a
bounding box, a validity map and the content. The bounding box
defines the bounds for each dimension, whereas the validity map
defines the visible cells within the bounds and the attributes per
cell define the content. To define the bounding box, we simply
insert a tuple for the lower as well as the upper bound upon array
creation (see Figure 4). Within the bounding box, we consider an
entry as valid if it exists and at least one attribute is not declared
as NULL.

CREATE ARRAY m (
i INTEGER DIMENSION [1:2],
j INTEGER DIMENSION [3:4],
v INTEGER);

x y v
1 3 𝑁𝑈𝐿𝐿

2 4 𝑁𝑈𝐿𝐿

Figure 4: When an array is created with ArrayQL and the
dimensions are specified, a corresponding relation is cre-
ated with two initial tuples defining the bounding box.

4.3 Interaction with SQL
Depending on its signature, ArrayQL expressions, when used as
part of a user-defined function, return either a table, e.g., TABLE
(x INT, y INT, v INT), or a single array attribute, e.g., INT[][]
(see Listing 6). As a table function, it returns the relational array
representation, that can be further processed in SQL. Otherwise,
when the function is declared to return a single attribute, the
result is cast to Umbra’s array datatype.
CREATE FUNCTION exampletable () RETURNS TABLE (x INT , y INT , v

INT) LANGUAGE 'arrayql ' AS 'SELECT␣[x],␣[y],␣v␣FROM␣m';
CREATE FUNCTION exampleattribute () RETURNS INT [][] LANGUAGE '

arrayql ' AS 'SELECT␣[x],␣[y],␣v␣FROM␣m';

Listing 6: ArrayQL as part of a user-defined function
returns either an SQL table or an SQL array.

5 ARRAYQL ALGEBRA
ArrayQL offers an algebra [33] that is similar to relational algebra
and allows a mapping to SQL operators considering the under-
lying schema. The algebra offers nine operators (see Table 1),
for which it defines content, validity maps and bounding box.
In our relational form, one relation 𝑎 ⊆ I𝑛 × R𝑚 with schema
𝑠𝑐ℎ(𝑎) = {𝑖1, . . . , 𝑖𝑛, 𝑟1, . . . , 𝑟𝑚} represents one 𝑛-dimensional ar-
ray 𝔞 ∈ (R𝑚) |𝑖1 |×...×|𝑖𝑛 | with𝑚 attributes of domainR as content.
Its coordinates (𝑖1, . . . , 𝑖𝑛) ⊆ I𝑛 form the primary key and de-
limit the bounding box. We formulate the validity map of an
array 𝔞 as set of indices 𝑑𝑎 ⊆ I𝑛 of valid entries. Transferred to
SQL, all entries are valid, for which a tuple exists with not-null
attributes. This section introduces the ArrayQL operators, the
corresponding syntax and the translation into SQL operators.

5.1 Rename
The rename operator assigns a new name to either a dimension,
attribute or a whole array. Similar to the rename operator 𝜌 in
SQL, it is introduced by a keyword (AS) behind expressions or
tables.
SELECT [i] AS s, [j] AS t, v AS c FROM m[s,t];

Listing 7: Rename operator.

5.2 Function Application
The apply operator applies a function 𝑓 ∈ R𝑚 → R𝑜 on certain
attributes of each valid entry. This is translated to an arithmetic
expression as part of an SQL projection 𝜋𝑖1,...,𝑖𝑛,𝑓 (𝑟1,...,𝑟𝑚) (𝑎). As
function application does not affect the validity map, no further
adjustments are needed.
SELECT [i], [j], v+2 FROM m;

Listing 8: Function application: addition.

5.3 Filter
The filter operator invalidates cells for which a condition does
not hold. This is called implicitly when accessing an array via
indices or explicitly when checking the cell’s value as part of
the WHERE-clause. Both ways are translated into selections of
relational algebra 𝜎𝑝 (𝑣) (𝑎), as both dimensions and attributes are
represented in SQL as attributes.
SELECT [i], [j], v FROM m WHERE v = 0.0;
SELECT [i] as i, [j] as j, * FROM m[i/2, j];

Listing 9: Explicit and implicit filter operator.

Operator Input Output Validity Map Relational Algebra
apply 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑓 ∈ (R→ R) R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝜋𝑖1,...𝑖𝑛,𝑓 (𝑣) (𝑎)

combine 𝔞, 𝔟 ∈ R|𝑖1 |×···×|𝑖𝑛 | R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 ⊎ 𝑑𝑏 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝑎d|><|d𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝑏)
i. dim. join 𝔞, 𝔟 ∈ R|𝑖1 |×···×|𝑖𝑛 | (R,R) |𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 ∩ 𝑑𝑏 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝑎 ⊲⊳𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝑏)

fill 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 | R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 ⊆ 𝑑𝑜𝑢𝑡 = |𝑖1 | × · · · × |𝑖𝑛 | . . . 0|𝑎.𝑖1 |,...,|𝑎.𝑖𝑛 | . . .
filter 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑝 ∈ (R→ B) R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑜𝑢𝑡 ⊆ 𝑑𝑎 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝜎𝑝 (𝑣) (𝑎)
rebox 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑖𝑙1, 𝑖

𝑢
1 , . . . , 𝑖

𝑙
𝑛, 𝑖

𝑢
𝑛 ∈ I R𝑖

𝑢
1 −𝑖𝑙1×···×𝑖

𝑢
𝑛−𝑖𝑙𝑛 𝑑𝑎 ⊆ |𝑖1 | × · · · × |𝑖𝑛 |, 𝑑𝑜𝑢𝑡 ⊆ 𝑖𝑢1 − 𝑖𝑙1 × · · · × 𝑖𝑢𝑛 − 𝑖𝑙𝑛 𝜎

𝑖𝑙1≤𝑖1≤𝑖
𝑢
1 ∧···∧𝑖𝑙𝑛≤𝑖𝑛≤𝑖𝑢𝑛

(𝑎)
reduce 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑓 ∈ (R|𝑖𝑛 | → R) R|𝑖1 |×···×|𝑖𝑛−1 | 𝑑𝑎 ⊆ |𝑖1 | × · · · × |𝑖𝑛 |, 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛−1 | 𝛾𝑖1,...,𝑖𝑛,𝑓 (𝑣) (𝑎)
rename 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 | R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝜌 (𝑎)
shift 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑖′1, . . . , 𝑖

′
𝑛 ∈ I R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝜋𝑖1+𝑖′𝑚,...,𝑖𝑛+𝑖′𝑛,𝑣 (𝑎)

Table 1: Operators of the ArrayQL algebra: the first column names the operator, the second column specifies the input
arguments, the third column the output array, the fourth column defines the set of valid indices and the latter one the
translation of ArrayQL operators into relational algebra. 𝑖1...𝑛 represents the attribute for the dimension in relational form,
|𝑖1...𝑛 | denotes the size of a dimension. We assume arrays having a single attribute 𝑣 ∈ R only.

5.4 Index Manipulation: Shift and Rebox
Shift moves the indices, whereas rebox redefines the bounding
boxes by enlarging or shrinking the array size. In our relational
schema, shift is translated into an arithmetic expression as part
of a projection, as it modifies each index by adding or subtracting
the difference 𝑖 ′1, . . . , 𝑖

′
𝑛 ∈ I:

𝜋𝑖1+𝑖′1,...,𝑖𝑛+𝑖′𝑛,𝑟1,...,𝑟𝑚 (𝑎).

SELECT [i] as i, [j] as j, b FROM m[i+1,j-1];

Listing 10: Shift operator.

For rebox, if the array size is shrunk, a conditional statement (se-
lection) filters out each index, which is outside the new bounding
box given as lower and upper bounds 𝑖𝑙1, 𝑖

𝑢
1 , . . . , 𝑖

𝑙
𝑛, 𝑖

𝑢
𝑛 ∈ I:

𝜎
𝑖𝑙1≤𝑖1≤𝑖𝑢1 ∧···∧𝑖𝑙𝑛≤𝑖𝑛≤𝑖𝑢𝑛

(𝑎) .

In any case, new array bounds have to be added afterwards (with
a union operator).

SELECT [1:5] as i, [1:5] as j, * FROM m[i,j];

Listing 11: Rebox operator.

5.5 Fill
The fill operator creates an entry with the default value (0 for nu-
merics) for the attributes of every invalid cell within the bounding
box. This is useful for linear algebra with arrays as input matrices
and has to be called by a keyword. Internally, it is translated to
a call to generate_series, an outer join and a projection, only
when enabled by the keyword filled in ArrayQL and needed
before applying specific operations (see Section 6.2):

𝜋𝐶𝑂𝐴𝐿𝐸𝑆𝐶𝐸 (𝑎.𝑟1,0),... (𝑎d|><|d𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝜌𝑏 (0 |𝑎.𝑖1 |,..., |𝑎.𝑖𝑛 |))) .

SELECT FILLED [i], [j], * FROM m;

Listing 12: The keyword FILLED enables the fill operator.

5.6 Combining and Joining
ArrayQL defines three operators for joining arrays, namely com-
bine, the inner dimension join and—its generalisation to attributes—
the inner extended join.

5.6.1 Combine. Combine merges two arrays of the same di-
mensionality but distinct valid cells, so it concatenates arrays.
All cells are valid that are at least valid in one input: 𝑑𝑎 ⊎ 𝑑𝑏 =

𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 |. NULL is assumed for the attributes of a
missing join partner. Combine acts like a full outer join, to which
it is translated in relational algebra:

𝑎d|><|d𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝑏) .

CREATE ARRAY m2(x INTEGER DIMENSION [3:4], y INTEGER DIMENSION
[1:2], v2 INTEGER);

SELECT [i] as i, [j] as j, v, v2 FROM m[i,j], m2[i,j];

Listing 13: Combine operator.

5.6.2 Inner Join. The inner dimension/extended join corre-
sponds to the inner join:

𝑎 ⊲⊳𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝑏) .

All cells are valid, that are valid in both join partners: 𝑑𝑎 ∩ 𝑑𝑏 =

𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 |. They differ, as the inner dimension join
only allows dimensions as indices, whereas the inner extended
join generalises the join predicate, so that attributes can be used
to determine the index as well. As the usage of either combine or
join is data-dependent and not known during compile-time, we
add the keyword JOIN to explicitly perform an inner join. This
differs from the original ArrayQL proposal where it shares the
syntax with combine (which is called when an inner join cannot
be applied).
SELECT [i] as i, [j] as j, v, v2 FROM m[i+2,j+2] JOIN m2[i-2,j

-2];

Listing 14: Inner dimension Join.

5.7 Reduce for Aggregations
Reduce performs an aggregation over at least one dimension
as needed by roll-up queries of analytical workloads. Reduce is
introduced by the keywords GROUP BY, as known from SQL,
followed by the preserved dimensions after reduction. Similarly,
one aggregation function 𝑓 ∈ ((R𝑚) |𝑖𝑛 | → R𝑚) must be ap-
plied to all remaining attributes. These similarities allow a direct
mapping to aggregations in relational algebra:

𝛾𝑖1,...,𝑖𝑛,𝑓 (𝑣) (𝑎).

SELECT [i], sum(v) FROM m GROUP BY i;

Listing 15: Reduce operator for aggregation: summation

6 APPLICATION OF ARRAYQL
Array query languages have two major application areas: the
common one is for use with geo-temporal data, the second one is
applying linear algebra on data in relational form for statistical
analysis. One important difference between the two domains
concerns the handling of invalid values. Array database systems
assume NULL for non-existing values, whereas these are inter-
preted as 0 within sparse matrices. To conform to the ArrayQL
specification, we assume the geo-temporal use-case as default.
To distinguish the other one, the keyword filled indicates ma-
trix operations. This section explains both use-cases including
table-function extensions.

6.1 Geo-Temporal Data
The intended purpose of ArrayQL is to allow index-based access
to geo-temporal data. With our ArrayQL integration into a re-
lational database system, mixed query types become possible.
A table created in SQL (see Listing 16) can be accessed within
ArrayQL (see Listing 17) and vice versa. ArrayQL interprets the
attributes that form the table’s primary key as indices. Accord-
ingly, SQL has access to all array’s dimensions as attributes.
CREATE TABLE taxidata(id TEXT , pickup_longitude INT ,

pickup_latitude INT , pickup_datetime DATE , dropoff_datetime
DATE , trip_duration FLOAT , PRIMARY KEY(id,

pickup_longitude , pickup_latitude));
INSERT INTO mytaxidata [..];

Listing 16: Table creation and data insertion using SQL.

SELECT [pickup_longitude],[pickup_latitude], SUM(trip_duration)
FROM mytaxidata GROUP BY pickup_longitude , pickup_latitude;

Listing 17: ArrayQL queries on an SQL table: the attributes
that form the primary key serve as indices.

6.2 Linear Algebra with ArrayQL
The ArrayQL operators allow expressing basic mathematical ex-
pressions. Complex functions are realised by dedicated operators
or user-defined functions. They are called as part of the from-
clause where arbitrary table functions are accepted as input.

When creating an array, the bounding box defines the size of
a matrix, the attributes determine the field of which each entry
is a member. Operations on matrices obey the following pattern:
scalar operations are part of the select-clause, matrix operations
belong to the from-clause (see Figure 5).

CREATE ARRAY A (
i INTEGER DIMENSION [1 : 2],
j INTEGER DIMENSION [1 : 3],
a FLOAT)

(𝑎𝑖 𝑗) = 𝐴 ∈ R2×3

SELECT [i],[j], A.a FROM A(𝑎𝑖 𝑗) = 𝐴

Figure 5: Correlation of ArrayQL with matrices.

When performing linear algebra on arrays, the main difference
to geo-temporal applications concerns the meaning of invalid
entries. As arrays are interpreted as sparse matrices, values of
non-existing entries are assumed to be zero. The fill operator has
to be put implicitly in front of respective operations to consider
operations that alter zero values. To enable this feature, we pro-
pose the keyword filled behind select. Having enabled this

Function ArrayQL operator
addition apply

scalar multiplication apply
matrix multiplication i.d.join, reduce

slice rebox
subtraction apply
transpose rename

Table 2: Matrix algebra with ArrayQL.

feature, the fill operator presented in Section 5.5 is called when
necessary: this includes all arithmetic unary and binary functions
but not joins. This functionality is enabled for all trigonometric,
arithmetic and aggregate functions (see Listing 18). During se-
mantic analysis, the fill operator is added to the operator tree
before the function call is generated. The operator creates an
array of the same dimensions containing zeros proceeded by an
outer join with the original table on the indices. A COALESCE
statement then replaces non-existing (null) values, thus within
the array-bounds only.

SELECT FILLED [i], [j], v+2 FROM m;
SELECT FILLED [i], max(v) FROM m GROUP BY i;

Listing 18: The fill operator is called before a function call,
for example, of an arithmetic binary function or a unary
aggregate function like a row-wise maximum function.

The ArrayQL algebra allows expressing basic mathematical
expressions as scalar operations or compound statements (see
Table 2). For operations not covered by the algebra, we add ad-
ditional table functions. We demonstrate matrix operations ex-
pressed in ArrayQL, short-cuts to simplify their usage and their
application for linear regression and training a neural network.

6.2.1 Scalar Operations. Scalar operations are part of the
select-clause as arithmetic expressions (see Listing 19). They
correspond to the apply operator, since scalar multiplication,
addition or subtraction are each applied elementwise.

SELECT [i],[j],m.v*n.v FROM m,n; -- multiplication
SELECT [i],[j],m.v+n.v FROM m,n; -- addition
SELECT [i],[j],m.v-n.v FROM m,n; -- subtraction

Listing 19: Scalar operations in ArrayQL.

6.2.2 Transpose and Slice. To transpose or slice an array, we
can rely on basic index manipulations. Slicing an array corre-
sponds to the rebox operator (see Listing 11), as it defines a
sub-range for each index. For transposition 𝐴𝑇 = (𝑎𝑖 𝑗)𝑇 = (𝑎 𝑗𝑖),
ArrayQL does not perform an operation but renames the indices
(see Listing 20) as the matrices are stored in a relational repre-
sentation as a coordinate list.

SELECT [j] AS s, [i] AS t, * FROM m[s, t]

Listing 20: Transpose.

6.2.3 Matrix Multiplication. The text-book implementation
of a matrix multiplication (𝑎𝑖,𝑘) · (𝑏𝑘,𝑗) =

∑𝑛
𝑘=1 𝑎𝑖𝑘𝑏𝑘 𝑗 can be

expressed in ArrayQL. In relational algebra, with two tables
𝑚{[𝑖, 𝑘, 𝑣]}, 𝑛{[𝑘, 𝑗, 𝑣]} each representing a matrix, the multipli-
cation corresponds to an operator tree out of join, apply (for
elementwise multiplication) and reduce (for final summation):

𝛾𝑚.𝑖,𝑛. 𝑗,𝑠𝑢𝑚 (𝑚.𝑣 ·𝑛.𝑣) (𝜋𝑚.𝑣 ·𝑛.𝑣 (𝑚 ⊲⊳𝑚.𝑘=𝑛.𝑘 𝑛)) .

ArrayQL allows to join over the dimension 𝑘 implicitly (see List-
ing 21). Nevertheless, this query highly resembles its SQL counter-
part (see Listing 22). In addition, it is not practical as the product
and the summation have to be stated manually.
SELECT [i], [j], SUM(product) AS a FROM (

SELECT [*:*] AS i, [*:*] AS j, [*:*] AS k, a.v * b.v AS
product

FROM m[i,k] a JOIN n[k,j] b) as ab GROUP BY i,j;

Listing 21: Text-book matrix multiplication in ArrayQL.

SELECT m.j AS i,n.j,SUM(m.v*n.v)
FROM a AS m INNER JOIN a AS n ON m.i=n.i
GROUP BY m.j, n.j;

Listing 22: Corresponding matrix multiplication in SQL.

6.2.4 Implemented Table Functions and Short-Cuts. To express
linear algebra with ArrayQL, we introduce abbreviations for ma-
trix operations. Matrix operations, either expressible in ArrayQL
(like matrix multiplication or addition), or requiring a table func-
tion (such as for inversion) should belong to the from-clause.
We implemented short-cuts to offer similar notations that resem-
ble mathematical expressions and avoid writing prefix function
calls (like f()). These short-cuts exist for operations not covered
so far by the ArrayQL algebra as well as for compound opera-
tions to simplify their application (see Listing 23). Furthermore,
this allows the from-clause to comprise larger statements out of
matrices later needed for linear regression.
SELECT [i],[j],* FROM m+n; -- addition
SELECT [i],[j],* FROM m^-1; -- inversion (table function call)
SELECT [i],[j],* FROM m*n; -- multiplication
SELECT [i],[j],* FROM m^2; -- power
SELECT [i],[j],* FROM m-n; -- subtraction
SELECT [i],[j],* FROM m^T; -- transposition

Listing 23: Short-cuts in ArrayQL.

6.2.5 Application. The presented operations allow solving
numerical tasks based onmatrix manipulations like solving linear
regression numerically or training a neural network.

Linear regression can be expressed out of an input array 𝑋 ∈
R𝑖×𝑗 , containing 𝑖 tuples with 𝑗 attributes, and a weight vector
®𝑤 ∈ R𝑗 to predict the labels ®𝑦 ∈ R𝑖 as follows: 𝑋 · ®𝑤 = ®𝑦.
Given a training dataset with corresponding labels ®𝑦, a closed-
form expression out of transposition, matrix multiplication and
inversion computes the optimal weight matrix:

®𝑤 = (𝑋 ′𝑇𝑋 ′)−1𝑋 ′𝑇 ®𝑦.

As multiplication and transposition are expressible in ArrayQL,
the corresponding short-cuts together with one for matrix in-
version allow ArrayQL to process the closed-form expression.
The query computes the weight matrix (see Listing 25) without
writing nested subqueries as in SQL (see Listing 24).
SELECT tmp.i, SUM(tmp.sum*y.val) FROM (
SELECT inv.i, m.i as j, sum(m.val*inv.sum)
FROM matrixinversion(TABLE (
SELECT a1.j AS i,a2.j,SUM(a1.val*a2.val)
FROM m AS a1 INNER JOIN m AS a2 ON a1.i=a2.i
GROUP BY a1.j, a2.j)

) AS inv INNER JOIN x ON inv.j=a.j GROUP BY inv.i, m.i
) AS tmp INNER JOIN y ON tmp.j=y.i GROUP BY tmp.i;

Listing 24: Linear regression in SQL.

SELECT [i],[j],* FROM ((m^T * m)^-1*m^T)*y

Listing 25: Linear regression in ArrayQL.

Supporting transposition and multiplication on arrays, Ar-
rayQL is capable of expressing the forward pass of a fully con-
nected neural network. A fully connected neural network with
one hidden layer of size ℎ requires two weight matrices 𝑤ℎ𝑥 ∈
Rℎ×| ®𝑥 | and 𝑤𝑜ℎ ∈ R |𝐿 |×ℎ and expects a feature vector as input.
For the forward pass, matrix multiplications together with an
activation function form a model function𝑚𝑤ℎ𝑥 ,𝑤𝑜ℎ

(®𝑥) ∈ R |𝐿 |
that produces an output vector of probabilities:

𝑠𝑖𝑔(𝑥) = (1 + 𝑒−𝑥)−1,

𝑚𝑤ℎ𝑥 ,𝑤𝑜ℎ
(®𝑥) = 𝑠𝑖𝑔(𝑤𝑜ℎ ·

𝑎ℎ𝑥︷ ︸︸ ︷
𝑠𝑖𝑔(𝑤ℎ𝑥 · ®𝑥))︸ ︷︷ ︸
𝑎𝑜ℎ

.

For preparation, we create the necessary tables for weights
as well as the input matrix in SQL and define the sigmoid as an
SQL function (see Listing 26). Afterwards, the forward pass is
computed using an ArrayQL statement (see Listing 27).
CREATE TABLE input(i INT PRIMARY KEY , v FLOAT);
CREATE TABLE w_hx(i INT , j INT , v FLOAT , PRIMARY KEY (i,j));
CREATE TABLE w_oh(i INT , j INT , v FLOAT , PRIMARY KEY (i,j));
INSERT INTO ...
-- helper function
CREATE FUNCTION sig(i FLOAT) RETURNS FLOAT AS
$$ SELECT 1.0/(1.0+ exp(-i));$$ LANGUAGE 'sql';

Listing 26: Preparation for the neural network in SQL-92.

SELECT [i],[j], sig(v) as v FROM w_oh * (
SELECT [i],[j], sig(v) as v FROM w_hx * input);

Listing 27: Forward pass in ArrayQL.

6.3 Logical Optimisations
Implemented within a relational database system, ArrayQL ben-
efits from query optimisation by design. The operators undergo
logical optimisations, inherited from the nature of the relational
operators, including cost-based query plan reordering based on
heuristics on the table sizes. This does not include mathemati-
cal optimisations that make use of, e.g., the symmetry property
of matrices. We discuss the logical optimisations theoretically
and show query plan reordering using multiplication of three
matrices as an example.

6.3.1 Optimisation Steps. Database systems optimise queries
logically by breaking up conjunctive predicates and pushing them
down together with projections and changing the join order.
We outline these optimisation steps with regard to ArrayQL
operators.

• Conjunctive predicate break-up and predicate push-down:
affects the filter and the rebox operator, as both are trans-
lated into selections. Filtering is similar to a selection. The
rebox operator allows us to ignore all tuples outside the
specified range.

• Projection push-down: concerns the apply and shift op-
erator, that are both translated into projections. This is
only beneficial for unbound attributes or when the query
optimiser covers mathematical transformations.

• Join ordering: applicable to the combine operator and the
inner dimension/extended join that are translated into
joins.

• Other: Beside projections, also aggregations should con-
sider mathematical transformations and be pushed down
if possible, as required by reduce. The rename operator is
only relevant for the data flow.

6.3.2 Cost-Based Query Plan Reordering. We demonstrate
cost-based query plan reordering by an example of a three-way
matrix multiplication. Given three matrices 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈
R𝑛×𝑜 ,𝐶 ∈ R𝑜×𝑝 , associativity allows computing their product
𝐴𝐵𝐶 ∈ R𝑚×𝑝 either as (𝐴𝐵)𝐶 with 𝐴𝐵 ∈ R𝑚×𝑜 or as 𝐴(𝐵𝐶)
with 𝐵𝐶 ∈ R𝑛×𝑝 . This results in two different operator plans
(see Figure 6) with the two joins as common elements but with
a different order concerning the aggregations. Although logi-
cal optimisation might push down the matrix subproduct out of
projection and aggregation above the first join, the query opti-
miser must be aware of distributive properties. This allows the
optimiser to transform the statement

∑𝑗

𝑗 ′=1 𝑎𝑖 𝑗 ′
∑𝑘
𝑘′=1 𝑏 𝑗 ′𝑘′𝑐𝑘′𝑙

over
∑𝑗

𝑗 ′=1
∑𝑘
𝑘′=1 𝑎𝑖 𝑗 ′𝑏 𝑗 ′𝑘′𝑐𝑘′𝑙 to

∑𝑘
𝑘′=1 𝑐𝑘′𝑙

∑𝑗

𝑗 ′=1 𝑎𝑖 𝑗 ′𝑏 𝑗 ′𝑘′ , when
needed.

𝛾𝑖,𝑙,𝑠𝑢𝑚 (𝑠𝑢𝑚 (𝑎.𝑣·𝑏.𝑣) ·𝑐.𝑣)

𝜋𝑖,𝑘,𝑙,𝑠𝑢𝑚 (𝑎.𝑣·𝑏.𝑣) ·𝑐.𝑣

𝛾𝑖,𝑘,𝑙,𝑠𝑢𝑚 (𝑎.𝑣·𝑏.𝑣),𝑐 .𝑣

𝜋𝑎.𝑖,𝑎.𝑗,𝑏.𝑘,𝑐.𝑙,𝑎.𝑣·𝑏.𝑣,𝑐.𝑣

⊲⊳𝑏.𝑘=𝑐.𝑘

⊲⊳𝑎.𝑗=𝑏.𝑗

𝑎 : { [𝑖, 𝑗, 𝑣] } 𝑏 : { [𝑗, 𝑘, 𝑣] }

𝑐 : { [𝑘, 𝑙, 𝑣] }

∑𝑘
𝑘′=1 𝑐𝑘′𝑙

∑𝑗

𝑗′=1 𝑎𝑖 𝑗′𝑏 𝑗′𝑘′

∑𝑗

𝑗′=1 𝑎𝑖′ 𝑗𝑏 𝑗′𝑘

(𝑎 ⊲⊳𝑎.𝑗=𝑏.𝑗 𝑏) ⊲⊳𝑏.𝑘=𝑐.𝑘 𝑐

𝛾𝑖,𝑙,𝑠𝑢𝑚 (𝑎.𝑣·𝑠𝑢𝑚 (𝑏.𝑣·𝑐.𝑣))

𝜋𝑖,𝑗,𝑙,𝑎.𝑣·𝑠𝑢𝑚 (𝑏.𝑣·𝑐.𝑣)

𝛾𝑖,𝑗,𝑙,𝑎.𝑣,𝑠𝑢𝑚 (𝑏.𝑣·𝑐.𝑣)

𝜋𝑎.𝑖,𝑎.𝑗,𝑏.𝑘,𝑐.𝑙,𝑎.𝑣,𝑏.𝑣·𝑐.𝑣

⊲⊳𝑎.𝑗=𝑏.𝑗

⊲⊳𝑏.𝑘=𝑐.𝑘𝑎 : { [𝑖, 𝑗, 𝑣] }

𝑏 : { [𝑗, 𝑘, 𝑣] } 𝑐 : { [𝑘, 𝑙, 𝑣] }

∑𝑗

𝑗′=1 𝑎𝑖 𝑗′
∑𝑘

𝑘′=1 𝑏 𝑗′𝑘′𝑐𝑘′𝑙

∑𝑘
𝑘′=1 𝑏 𝑗′𝑘′𝑐𝑘′𝑙

𝑎 ⊲⊳𝑎.𝑗=𝑏.𝑗 (𝑏 ⊲⊳𝑏.𝑘=𝑐.𝑘 𝑐)

Figure 6: Unoptimised operator plan for three-waymatrix
multiplication of (𝐴𝐵)𝐶 (left) and𝐴(𝐵𝐶) (right): the join on
three relations might be reordered depending on the car-
dinalities. The projection and aggregation for the matrix
subproduct can be pushed down above the first join.

HyPer [20, 24, 40] and Umbra are using index-based heuristics
for join order optimisation [28]. As index-based heuristics exploit
index structures to calculate join selectivities, they estimate join
cardinalities more precisely. This is ideally suited to a relational
matrix representation with an index on the dimensions used for
joining. Given the densities 𝑑𝑠𝑎, 𝑑𝑠𝑏 , 𝑑𝑠𝑎𝑏 ∈ [0, 1], the selectivity
of a join with 𝑑𝑠𝑎𝑏 as the single unknown parameter is given as
𝑠𝑒𝑙 (|𝐴 ⊲⊳ 𝐵 |) = |𝐴⊲⊳𝐵 |

|𝐴 | |𝐵 | =
𝑠𝑎𝑏 ·𝑚 ·𝑜

𝑑𝑠𝑎 ·𝑚 ·𝑛 ·𝑑𝑠𝑏 ·𝑛 ·𝑜 =
𝑑𝑠𝑎𝑏

𝑛2 ·𝑑𝑠𝑎 ·𝑑𝑠𝑏 .

7 EVALUATION
For evaluation we measure the performance of ArrayQL under
geo-temporal and linear algebra workloads. For the first use-case,
we consider linear algebra extensions for database systems. For
the latter, we compare the performance of ArrayQL in Umbra to
those of popular array database systems. This section first dis-
cusses the performance of matrix operations before we proceed
with the ArrayQL algebra on geo-temporal datasets.

System: All measurements have been conducted on a machine
running Ubuntu 20.04 LTS, equipped with six Intel Core i7-3930K
CPUs running at 3.20GHz, and offering 64 GB of main-memory.

Data: We benchmark with the New York taxi dataset2, the
science benchmark SS-DB [8] and randomly generated data.
2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Competitors: The chosen competitors within popular array
database systems are RasDaMan (version 10.0.0), MonetDB SciQL
and SciDB (version 19.11) to benchmark geo-temporal applica-
tions. To benchmark linear algebra, we pick RMA as MonetDB’s
extension for linear algebra and MADlib (1.17.0 release) as an
extension on top of PostgreSQL version 12.2.

7.1 Linear Algebra
This section discusses the performance of basic matrix operations
as well as compound operations, either expressed in ArrayQL
within Umbra or in SQLwithin its competitors, MADlib and RMA.
MADlib provides two different representations as it distinguishes
between arrays andmatrices: for arrays, linear algebra operations
are applied to the PostgreSQL array type, for matrices, operations
expect a table in relational representation. Thus, MADlib’s sparse
relational representation corresponds to the underlying one for
ArrayQL. In contrast, RMA uses a tabular representation. This
section justifies the applicability of a relational representation
for linear algebra without losing performance.

7.1.1 Matrix Algebra. This subsection presents the perfor-
mance of micro-benchmarks (matrix addition and gram matrix
computation) for the three matrix types (MADlib arrays, MADlib
sparse matrices, RMA) against ArrayQL.

RMA’s tabular representation depends on the database schema
(the first dimension corresponds to the attributes, the second to
the number of tuples). For benchmarking purposes, RMA pro-
vides a Python script, that creates the schema, inserts as many
tuples as the specified size for the second dimension and creates
SQL statements for matrix addition and gram matrix computa-
tion. For comparison, we add support to create statements for
MADlib and ArrayQL and fill the relations with the same data.

We disable autocommit to measure execution time only, as it
would slow down RMA dramatically. In the following, we mea-
sure the impact of the size and sparsity of a matrix on the runtime
when performing matrix addition and gram matrix multiplica-
tion.

5 · 106 1 · 107
0

10

20

30

40

Number of Elements

Ru
nt
im

e
(s
ec
)

RMA Optimiser RMA Runtime Umbra
Madlib Matrices Madlib Arrays

0.1 0.5 0.9
0

10

20

30

40

Sparsity

Figure 7: Evaluation of matrix addition: varying the num-
ber of elements in a dense array or the sparsity of an array
with 106 elements.

Figure 7 shows the runtime needed for matrix addition (𝑋 +𝑋),
when varying the sparsity, and on dense arrays, when varying the
input size. With increasing size, ArrayQL computes the matrix
sum faster than RMA. RMA’s compute time consists of optimisa-
tion and runtime, both increase with the size of a matrix. When
varying the sparsity, MADlib matrices and Umbra benefit from
sparse matrices, since zero values simply do not exist. RMA needs

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

constant runtime with increasing sparsity as sparse and dense
matrices consume the same space in a tabular representation.

Matrix addition onMADlibmatrices performs theworst, whereas
the same operation on MADlib arrays performs the best. This is
reasonable, as the aggregation time needed to create arrays out
of its relational form is not considered.

1 · 105 5 · 105 1 · 106
10−1

101

103

105

Entries of resulting matrix

Ru
nt
im

e
(s
ec
)

RMA Optimiser RMA Runtime Umbra Madlib Matrices

0 0.2 0.4 0.6 0.8
10−1
100
101
102
103
104
105

Sparsity

Figure 8: Evaluation of grammatrix computation: varying
the number of elements in a dense array and the sparsity
of a resulting matrix with 90000 entries.

Gram matrix computation (𝑋 · 𝑋𝑇 , see Figure 8) yields simi-
lar results: the higher the sparsity, the lower the runtime when
handling MADlib matrices as well as within ArrayQL in Umbra.
MADlib does not allow to transpose arrays, so gram matrix com-
putation is not possible. Again, RMA needs constant compute
time and, as the transposition is more expensive in a tabular
representation, it is slower than Umbra.

When varying the input size, multiplication on MADlib ma-
trices takes the most time. Multiplication in ArrayQL results in
the shortest execution time as it is based on Umbra’s relational
algebra.

In summary, ArrayQL in Umbra benefits from sparse matrices
as well as the performance of an in-memory database system.
Therefore, our relational representation shows comparable per-
formance to existing database extensions for linear algebra.

7.1.2 Linear Regression. We solved linear regression to bench-
mark composed matrix operations on a synthetic dataset. This
section compares Umbra’s performance with ArrayQL when us-
ing linear algebra only to the one of MADlib, which provides
a dedicated table function to compute the optimal weights. Fig-
ure 9 shows the runtime of both systems when either varying
the number of input tuples or the number of attributes. Our
solution for ArrayQL—using matrix operations—outperforms
MADlib’s table function for linear regression only for a small
number of input tuples or attributes. To further investigate the
performance in Umbra, Figure 10 breaks down the runtime into
the individual sub-operations. With increasing number of input
tuples, the impact of the materialising inverse function on the
runtime decreases as the inverted matrix (𝑋 ′𝑇𝑋 ′)−1 becomes rel-
atively small. Most time is spent on the aggregation part of each
matrix product (summation). Instead of using matrix algebra, a
dedicated equation solve function can compute linear regression
more efficiently. But calling an optimised equation solve function
has the downside of materialising the input first. Nevertheless,
this experiment has shown the ability to solve numerical prob-
lems when suitable table functions are available. The conception
of a non-materialising table function for the matrix inversion [56]
and a non-materialising equation solve function is for future

work. The hash table used for summation can be further opti-
mised: when the number of keys (indices) is known beforehand,
the memory can be preallocated and the tuples prepartitioned
for efficient access.

101 102 103 104 105
10−2

10−1

100

Number of Tuples

Ru
nt
im

e
(s
ec
)

Umbra Madlib

10 20 30 40 50
0

1

2

3

Number of Attributes

Figure 9: Runtime for solving linear regressionwhen vary-
ing the number of tuples (50 attributes) or when varying
the number of attributes (105 input tuples).

101 102 103 104 105
10−3
10−2
10−1
100

Number of Tuples

Ru
nt
im

e
(s
ec
)

(𝑋 ′𝑇𝑋 ′)−1𝑋 ′𝑇 ®𝑦 (𝑋 ′𝑇𝑋 ′)−1𝑋 ′𝑇 (𝑋 ′𝑇𝑋 ′)−1𝑋 ′𝑇 w/o aggr.
(𝑋 ′𝑇𝑋 ′)−1 (𝑋 ′𝑇𝑋 ′) (𝑋 ′𝑇𝑋 ′) w/o aggr.

10 20 30 40 50
0

1

2

3

Number of Attributes

Figure 10: Runtime within Umbra broken down by opera-
tion for solving linear regression when varying the num-
ber of tuples (50 attributes) or when varying the number
of attributes (105 input tuples).

7.2 Array Operations
This section compares the performance of ArrayQL in Umbra
to the one of popular array database systems. RasDaMan3 and
MonetDB SciQL-2-NetCDF4 ran natively on the system, a Docker
container running Ubuntu 16.04 was used for SciDB5. We tested
basic operations on the New York Taxi dataset, array operations
with the SS-DB benchmark and with synthetic data.

7.2.1 New York Taxi Data. The New York taxi dataset of De-
cember 20196 (624 MB) provided the source for benchmarking
real-world queries (see Table 3) on one-, two- and ten-dimensional
arrays. Queries Q1, Q3 and Q7 benchmark projections, whereas
queries Q2, Q4, Q5, Q6 and Q8 benchmark aggregation functions
like summation, average and count, and queries Q9/Q10 modify
the array bounds. In detail, Q1 retrieves all vendor ID attributes
of the source array. Q2 sums up the total distance driven. Q3 com-
putes the distance ratio of one ride to the total distance driven.
Q4 returns the maximum duration of a trip. Q5 returns the aver-
age total amount (payment), whereas Q6 calculates the average
payment per customer excluding trips with no passengers. Q7
returns all attributes of trips with four or more customers. Q8
3https://doc.rasdaman.org/index.html
4https://dev.monetdb.org/hg/MonetDB/shortlog/SciQL-2-NetCDF
5https://github.com/rvernica/docker-library
6https://nyc-tlc.s3.amazonaws.com/trip+data/yellow_tripdata_2019-12.csv

https://doc.rasdaman.org/index.html
https://dev.monetdb.org/hg/MonetDB/shortlog/SciQL-2-NetCDF
https://github.com/rvernica/docker-library
https://nyc-tlc.s3.amazonaws.com/trip+data/yellow_tripdata_2019-12.csv

0.01 0.1 1 10 100

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

1.36

6.5 · 10−3

8.46

3.06 · 10−2

6.23 · 10−3

1.78 · 10−2

5.4

5.81 · 10−3

10.17

0.3

0.41

6.97 · 10−2

1.71

0.12

6.88 · 10−2

0.64

3.65

0.27

20.03

1.29

0.47

0.31

1.82

1.7

0.32

0.29

1.4

0.37

2.71

1

0.87

0.43

0.89

3.81

0.43

0.43

0.46

7.54

0.33

Runtime (sec)

(a) 1D grid

Umbra SciDB SciQL RasDaMan

0.01 0.1 1 10 100

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

1.38

6.52 · 10−3

8.55

3.16 · 10−2

6.79 · 10−3

3.66 · 10−2

5.46

5.81 · 10−3

3.19

1.23

0.76

7.51 · 10−2

2.91

0.17

7.61 · 10−2

0.93

5.24

0.38

35.32

15

0.23

1.18 · 10−2

0.6

0.6

1.15 · 10−2

9.37 · 10−2

0.58

0.17

1.01

0.43

6

3.84

0.43

0.44

0.47

2.4

1.01

Runtime (sec)

(b) 2D grid

Figure 11: Runtimes of proposed queries on the New York
taxi dataset with (a) one- and (b) two-dimensional indices.

0.001 0.01 0.1 1 10
Q1
Q2
Q3
Q4
Q5
Q6
Q7

Time (sec)

Execution Compilation

Figure 12: Impact of code-generation on selected ArrayQL
queries in Umbra: Compilation time vs. runtime.

Q1 SELECT VendorID FROM taxiData;

Q2 SELECT SUM(trip_distance) FROM taxiData;

Q3 SELECT 100.0* trip_distance/tmp.total_distance FROM taxiData ,

(SELECT SUM(trip_distance) as total_distance FROM taxiData) as tmp;

Q4 SELECT MAX((tpep_dropoff_datetime - tpep_pickup_datetime)

+ (end_time - start_time)) FROM taxiData;

Q5 SELECT AVG(total_amount) FROM taxiData;

Q6 SELECT AVG(total_amount/passenger_count)

FROM taxiData WHERE passenger_count <> 0;

Q7 SELECT * FROM taxiData WHERE passenger_count >=4;

Q8 SELECT COUNT (*) FROM taxiData WHERE payment_type =1;

Q9 SELECT [0:1048574] as i, * FROM taxiData[i+1];

Q10 SELECT [42:42000] as i, * FROM taxiData[i];

Table 3: ArrayQL queries on the NewYork taxi dataset, the
correspondingAQL, RasQL and SciQL queries are omitted.

1 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

1.
39

·1
0−

3

1.
76

·1
0−

3

1.
78

·1
0−

3

2.
94

·1
0−

3

4.
54

·1
0−

3

1.
15

·1
0−

2

9.
29

·1
0−

2

9.
43

·1
0−

2

0.
10 0.
29

0.
62

2.
52

5.
45

·1
0−

3

5.
37

·1
0−

3

1.
32

·1
0−

2

2.
07

·1
0−

2

2.
53

·1
0−

2

5.
48

·1
0−

2Ru
nt
im

e
(s
ec
)

(a) SpeedDev

Umbra SciDB SciQL

1 2 4 6 8 10
0

1

2

3

4

5

2.
62

·1
0−

4

2.
32

·1
0−

3

5.
26

·1
0−

3

3.
38

·1
0−

2

5
·1
0−

2

0.
12

5.
12

·1
0−

2

5.
51

·1
0−

2

6.
95

·1
0−

2

0.
54

1.
25

4.
38

2.
65

·1
0−

3

4.
95

·1
0−

3

0.
29

0.
13 0.
29

1.
10

Dimensions

Ru
nt
im

e
(s
ec
)

(b) MultiShift

Figure 13: Impact of dimensionality on the runtime.

SpeedDev

SELECT MAX (3600.0*(tmp3.v3-tmp1.v)) as speed

FROM (SELECT pickup_day , AVG(trip_distance/total_duration) as v

FROM taxiData WHERE total_duration <>0 GROUP BY pickup_day)

as tmp1 , (SELECT AVG(trip_distance/total_duration) as v3

FROM taxiData WHERE total_duration <> 0) as tmp3;

MultiShift SELECT [pickup_day] as a, ..., * FROM taxiData[a+1, ...]

Table 4: Multi-dimensional queries (New York taxi data).

101 104 107
10−3

10−2

10−1

Ru
nt
im

e
(s
ec
)

Umbra SciDB SciQL RasDaMan

101 104 107
10−4

10−2

100

101 104 107
102

106

1010

Number of Elements

El
em

en
ts
/s
ec

(a) Summation

101 104 107
102

106

1010

Number of Elements
(b) Shift

Figure 14: Runtime and throughput of an aggregation
(summation) or shifting the indices of a two-dimensional
matrix depending on the number of elements.

0.001 0.01 0.1 1 10 100

SSDBQ1

SSDBQ2

SSDBQ3

2.05 · 10−3

1.78 · 10−3

1.32 · 10−3

11.17

11.23

11.23

4.81

9.81 · 10−3

7.38 · 10−3

0.11

0.28

0.28

Runtime (sec)

(a) Tiny

Umbra SciDB SciQL RasDaMan

0.001 0.01 0.1 1 10 100 100010000

SSDBQ1

SSDBQ2

SSDBQ3

5.59 · 10−3

5.81 · 10−3

5.68 · 10−3

118.83

2,963.33

2,955.98

8.57

1.45 · 10−2

1.18 · 10−2

1

3.57

3.57

Runtime (sec)

(b) Small

0.01 0.1 1 10 100

SSDBQ1

SSDBQ2

SSDBQ3

1.78 · 10−2

1.75 · 10−2

1.73 · 10−2

12.66

1.53 · 10−2

1.2 · 10−2

4.86

14.24

14.24

Runtime (sec)

(c) Normal

Figure 15: SS-DB benchmark with datasets of size (a) tiny, 58 MB, (b) small, 844 MB, and (c) normal, 3.4 GB.

SSDBQ1

ArrayQL: SELECT AVG(a) FROM ssDB[0:19]
AQL: SELECT AVG(a) FROM subarray(very_small,0,0,0,19,1599,1599)
SciQL: SELECT AVG(a) FROM ssDB[0:19]
RasQL: SELECT AVG_CELLS(r.a * (r.z<=19)) FROM ssDB as r

SSDBQ2

ArrayQL:
SELECT AVG(a)
FROM (SELECT [z], [x] as s, [y] as t, * FROM ssDB[0:19, s+4, t+4]
WHERE s%2 = 0 AND t%2 = 0) as tmp GROUP BY z

AQL:

SELECT AVG(a) FROM reshape(subarray(ssDB, 0,0,0,19,999,999),
<a:int32, b:int32, c:int32, d:int32, e:int32,
f:int32,g:int32,h:int32,i:int32,j:int32, k:int32>
[z=0:19,1000000,0,x=4:1003,1000000,0,y=4:1003,1000000,0])
WHERE x%2=0 and y%2=0 GROUP BY z

SciQL: SELECT AVG(a) FROM (SELECT [z], [x+4] as s, [y+4] as t, *
FROM ssDB[0:19] WHERE x%2 = 0 AND y%2 = 0) as tmp GROUP BY z

RasQL:
SELECT ADD_CELLS(shift(r.a * (r.z<=19 and mod(r.x, 2) = 0
and mod(r.y, 2) = 0), [4,4])) / COUNT_CELLS(shift((r.z<=19 and
mod(r.x,2) = 0 and mod(r.y,2) = 0) , [4,4])) FROM ssDB as r

SSDBQ3

ArrayQL:
SELECT AVG(a) FROM (SELECT [z], [x] as s, [y] as t, *
FROM ssDB[0:19, s+4, t+4]
WHERE s%4 = 0 AND t%4 = 0) as tmp GROUP BY z

AQL:

SELECT AVG(a) FROM reshape(subarray(ssDB, 0,0,0,19,999,999),
<a:int32, b:int32, c:int32, d:int32, e:int32,
f:int32,g:int32,h:int32, i:int32,j:int32, k:int32>
[z=0:19,1000000,0 ,x=4:1003,1000000,0, y=4:1003,1000000,0])
WHERE x%4=0 and y%4=0 GROUP BY z

SciQL: SELECT AVG(a) FROM (SELECT [z], [x+4] as s, [y+4] as t, *
FROM ssDB[0:19] WHERE x%4 = 0 AND y%4 = 0) as tmp GROUP BY z

RasQL:
SELECT ADD_CELLS(shift(r.a * (r.z<=19 and mod(r.x, 4) = 0
and mod(r.y, 4) = 0), [4,4])) / COUNT_CELLS(shift((r.z<=19 and
mod(r.x,4) = 0 and mod(r.y,4) = 0) , [4,4])) FROM ssDB as r

Table 5: Performed queries on the SS-DB dataset.

retrieves the number of how often a payment method was used.
Q9 reboxes the array indices (slice and shift). Q10 slices the array
to return a subarray.

Figure 11 shows the runtime of the presented queries on the
New York taxi dataset stored as a one- or two-dimensional grid.
To be comparable to the array database systems, which store
the data as a dense grid, we added a synthetic key to the data
in Umbra. ArrayQL within Umbra performs well on computing
aggregates (Q2, Q4, Q5, Q6 and Q8) and slicing the array (Q10).
The runtime includes the time for printing to /dev/null, which
influenced the runtime for queries returning multiple array en-
tries (Q1, Q3, Q7, Q9) as the index was attached to every value.
The compilation time of ArrayQL queries was negligible (see Fig-
ure 12). Furthermore, the performance of Umbra was not heavily
influenced by additional predicates (Q8) or computations (Q4).

The architecture of RasDaMan ensures efficient execution of
operations that change the dimensions and was the fastest system
to retrieve specific data (Q7). SciDB’s performance was mostly
superior to the one of RasDaMan (Q1, Q2, Q4, Q5), but the reshape
operator slowed down the performance on array transformations
(Q9, Q10). In summary, the current Umbra-ArrayQL prototype
ensures high performance on subarray accesses through its index

structure and separately stored dimension indices. Furthermore,
aggregations and computations based on the data itself can be
processed effectively.

Tomeasure the impact of involved dimensions on aggregations
(see Table 4), we also stored the taxi data as a ten-dimensional
array. Query SpeedDev calculates the maximum deviation of the
average speed per day compared to the average speed of the
whole dataset, query MultiShift shifts all array’s dimensions.
Figure 13 shows the runtime in dependency on the number of
dimensions. For both queries, the runtime on all tested systems
scaled linearly with an increasing number of dimensions. While
Umbra and MonetDB took a similar time to run the query Speed-
Dev, SciDB could not compute it as fast as the others. For the
query MultiShift, MonetDB SciQL treats high-dimensional ar-
rays efficiently. Umbra outperforms both competitors in compute
time (the time for printing the indices not considered). SciDB
was slower for all arrays although we adapted the query to avoid
the reshape operator.

7.2.2 RandomData. Figure 14 shows the runtime and through-
put on two-dimensional arrays with synthetic data and an in-
creasing number of elements. For both tests, summation and
shifting the indices, the runtime scales linearly with the number
of elements. Umbra is the fastest system when performing ag-
gregates, but shifting slows down the performance as all indices
have to be changed. The upper constant lines in the lower dia-
grams display the maximum throughput of 4.5 · 109 elements per
second (based on a measured7 memory bandwidth of 36 GB/s
divided through 8 B, the size of a double precision floating point
number). This shows that ArrayQL in Umbra best approaches
the maximum possible performance, with only a factor of ten in
between.

7.2.3 SS-DB Data. SS-DB is a benchmark for scientific work-
loads that simulates astronomical data for array-oriented process-
ing. A data generator8 synthesises three-dimensional data—one
dimension identifies the tile, two dimensions determine a cell—
with eleven attributes each. The queries SSDBQ1/2/3 (see Table 5),
adapted from a paper comparing SciQL and SciDB [37], compute
the average of one attribute for 20 tiles. SSDBQ2 and SSDBQ3 do
the same but consider fewer cells (50 % and 25 % of the original
7https://software.intel.com/content/www/us/en/develop/articles/
intelr-memory-latency-checker.html
8https://www.xldb.org/science-benchmark/

https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://www.xldb.org/science-benchmark/

size). All queries were tested on an image of size tiny (58 MB),
small (844 MB) and normal (3.4 GB).

Figure 15 presents the measured runtimes. For SSDBQ1, Um-
bra may use its index structure on the array’s dimensions to
compute the result faster than the others on all datasets. Fur-
thermore, Umbra is not as heavily affected by the increase of the
data size as the other systems. SSDBQ2 and SSDBQ3 combine
array operations like shifting with specific attribute selection
and aggregation functions. Although SSDBQ2 considers more
values than SSDBQ3, this does not affect the runtime. As seen in
Section 7.2.1, MonetDB can process shift-operations more easily
than Umbra, whereas Umbra performs better on aggregations.
Summarised, both systems show similar performance for these
queries. The tested SciDB version took the longest to adjust the
index for the smaller subarray.

8 CONCLUSION
In this paper, we have integrated ArrayQL into a code-generating
database system as another query interface and addressable inside
SQL as user-defined functions. As this standardised array query
language has not yet been integrated into a productive system, we
completed its grammar specification and extended Umbra’s query
engine to accept ArrayQL statements. For that reason, we defined
a relational array model and translated ArrayQL operators to
relational algebra. We demonstrated the suitability of an array
query language for geo-temporal data by the SS-DB benchmark
and by the New York taxi data as a real-world example. Moreover
this language can be used for linear algebra to compute machine
learning tasks. For basic matrix operations, ArrayQL statements
performed better than state-of-the-art linear algebra extensions
for database systems, whereas materialising table-functions as
needed for inversion slowed down the runtime. For geo-temporal
tasks, ArrayQL outperformed traditional array database systems,
when performing aggregations or filtering data by a predicate.

REFERENCES
[1] Alexander Alexandrov et al. 2014. The Stratosphere platform for big data

analytics. VLDB J. 23, 6 (2014), 939–964.
[2] GustavoAlonso et al. 2019. doppioDB 1.0:Machine Learning inside a Relational

Engine. IEEE Data Eng. Bull. 42, 2 (2019), 19–31.
[3] Peter Baumann et al. 1998. The Multidimensional Database System RasDaMan.

In SIGMOD Conference. ACM Press, 575–577.
[4] Matthias Boehm et al. 2016. SystemML: Declarative Machine Learning on

Spark. PVLDB 9, 13 (2016), 1425–1436.
[5] Robert Brijder et al. 2018. On the Expressive Power of Query Languages for

Matrices. In ICDT (LIPIcs, Vol. 98). 10:1–10:17.
[6] Cheng Chen et al. 2021. Optimizing An In-memory Database System For

AI-powered On-line Decision Augmentation. PVLDB 14, 5 (2021), 799–812.
[7] Philippe Cudré-Mauroux et al. 2009. A Demonstration of SciDB: A Science-

Oriented DBMS. PVLDB 2, 2 (2009), 1534–1537.
[8] Philippe Cudre-Mauroux et al. 2010. SS-DB: A standard science dbms bench-

mark. Under submission (2010).
[9] Angjela Davitkova et al. 2020. The ML-Index: A Multidimensional, Learned

Index for Point, Range, and Nearest-Neighbor Queries. In EDBT. 407–410.
[10] Oksana Dolmatova et al. 2020. A Relational Matrix Algebra and its Implemen-

tation in a Column Store. In SIGMOD Conference. ACM, 2573–2587.
[11] Jennie Duggan et al. 2015. Skew-Aware Join Optimization for Array Databases.

In SIGMOD Conference. ACM, 123–135.
[12] Ahmed Elgohary et al. 2018. Compressed linear algebra for large-scalemachine

learning. VLDB J. 27, 5 (2018), 719–744.
[13] Franz Färber et al. 2012. The SAPHANADatabase – AnArchitecture Overview.

IEEE Data Eng. Bull. 35, 1 (2012), 28–33.
[14] Zekai J. Gao et al. 2017. The BUDS Language for Distributed Bayesian Machine

Learning. In SIGMOD Conference. ACM, 961–976.
[15] Goetz Graefe. 1990. Encapsulation of Parallelism in the Volcano Query Pro-

cessing System. In SIGMOD Conference. ACM Press, 102–111.
[16] Anja Gruenheid, Edward Omiecinski, and Leo Mark. 2011. Query optimization

using column statistics in hive. In IDEAS. ACM, 97–105.
[17] Ali Hadian, Ankit Kumar, and Thomas Heinis. 2020. Hands-off Model Integra-

tion in Spatial Index Structures. In AIDB@VLDB.
[18] Joseph M. Hellerstein et al. 2012. The MADlib Analytics Library or MAD

Skills, the SQL. PVLDB 5, 12 (2012), 1700–1711.

[19] Axel Hertzschuch et al. 2021. Simplicity Done Right for Join Ordering. In
CIDR.

[20] Nina Hubig et al. 2017. HyPerInsight: Data Exploration Deep Inside HyPer. In
CIKM. ACM, 2467–2470.

[21] Fuad T. Jamour et al. 2019. Matrix Algebra Framework for Portable, Scalable
and Efficient Query Engines for RDF Graphs. In EuroSys. ACM, 27:1–27:15.

[22] Matthias Jasny et al. 2020. DB4ML - An In-Memory Database Kernel with
Machine Learning Support. In SIGMOD Conference. ACM, 159–173.

[23] Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, and Thomas Neu-
mann. 2021. Umbra as a Time Machine. In BTW (LNI, Vol. P-311). GI, 123–132.

[24] Alfons Kemper et al. 2011. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In ICDE. IEEE, 195–206.

[25] David Kernert et al. 2014. SLACID - sparse linear algebra in a column-oriented
in-memory database system. In SSDBM. ACM, 11:1–11:12.

[26] Andreas Kunft et al. 2016. Bridging the gap: towards optimization across
linear and relational algebra. In BeyondMR@SIGMOD. ACM, 1.

[27] Andreas Kunft et al. 2019. An Intermediate Representation for Optimizing
Machine Learning Pipelines. PVLDB 12, 11 (2019), 1553–1567.

[28] Viktor Leis et al. 2017. Cardinality Estimation Done Right: Index-Based Join
Sampling. In CIDR.

[29] Xupeng Li et al. 2017. MLog: Towards Declarative In-Database Machine
Learning. PVLDB 10, 12 (2017), 1933–1936.

[30] Kian-Tat Lim et al. 2012. ArrayQL syntax. In XLDB. http://www.xldb.org/
wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf

[31] Raoni Lourenço, Juliana Freire, and Dennis E. Shasha. 2019. Debugging Ma-
chine Learning Pipelines. In DEEM@SIGMOD. ACM, 3:1–3:10.

[32] Shangyu Luo et al. 2017. Scalable Linear Algebra on a Relational Database
System. In ICDE. IEEE, 523–534.

[33] David Maier et al. 2012. ArrayQL algebra: version 3. In XLDB. http://www.
xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf

[34] Ingo Müller et al. 2020. Lambada: Interactive Data Analytics on Cold Data
Using Serverless Cloud Infrastructure. In SIGMOD Conference. ACM, 115–130.

[35] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for
Modern Hardware. PVLDB 4, 9 (2011), 539–550.

[36] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR.

[37] Holger Pirk, Ying Zhang, Stefan Manegold, and Martin Kersten. 2013. An
evaluation of ad-hoc queries on arrays in MonetDB.

[38] Maximilian Schleich et al. 2019. A Layered Aggregate Engine for Analytics
Workloads. In SIGMOD Conference. ACM, 1642–1659.

[39] Josef Schmeißer et al. 2021. B2-Tree: Cache-Friendly String Indexing within
B-Trees. In BTW (LNI, Vol. P-311). GI, 39–58.

[40] Maximilian E. Schüle et al. 2017. Monopedia: Staying Single is Good Enough -
The HyPer Way for Web Scale Applications. PVLDB 10, 12 (2017), 1921–1924.

[41] Maximilian E. Schüle et al. 2019. In-Database Machine Learning: Gradient
Descent and Tensor Algebra for Main Memory Database Systems. In BTW
(LNI, Vol. P-289). GI, 247–266.

[42] Maximilian E. Schüle et al. 2019. ML2SQL - Compiling a Declarative Machine
Learning Language to SQL and Python. In EDBT. 562–565.

[43] Maximilian E. Schüle et al. 2019. MLearn: A Declarative Machine Learning
Language for Database Systems. In DEEM@SIGMOD. ACM, 7:1–7:4.

[44] Maximilian E. Schüle et al. 2019. The Power of SQL Lambda Functions. In
EDBT. 534–537.

[45] Maximilian E. Schüle et al. 2020. ARTful Skyline Computation for In-Memory
Database Systems. In ADBIS (CCIS, Vol. 1259). Springer, 3–12.

[46] Maximilian E. Schüle et al. 2020. Freedom for the SQL-Lambda: Just-in-Time-
Compiling User-Injected Functions in PostgreSQL. In SSDBM. ACM, 6:1–6:12.

[47] Maximilian E. Schüle et al. 2021. In-Database Machine Learning with SQL on
GPUs. In SSDBM. ACM, 25–36.

[48] Maximilian E. Schüle et al. 2021. TardisDB: Extending SQL to Support Ver-
sioning. In SIGMOD Conference. ACM, 2775–2778.

[49] Maximilian E. Schüle, Tobias Götz, Alfons Kemper, and Thomas Neumann.
2021. ArrayQL for Linear Algebra within Umbra. In SSDBM. ACM, 193–196.

[50] Amir Shaikhha et al. 2019. Efficient differentiable programming in a functional
array-processing language. Proc. ACM Prog. Lang. 3, ICFP (2019), 97:1–97:30.

[51] Johanna Sommer et al. 2019. MNC: Structure-Exploiting Sparsity Estimation
for Matrix Expressions. In SIGMOD Conference. ACM, 1607–1623.

[52] Christina Teflioudi, Faraz Makari, and Rainer Gemulla. 2012. Distributed
Matrix Completion. In ICDM. IEEE, 655–664.

[53] Yisu RemyWang, Shana Hutchison, Dan Suciu, Bill Howe, and Jonathan Leang.
2020. SPORES: Sum-Product Optimization via Relational Equality Saturation
for Large Scale Linear Algebra. PVLDB 13, 11 (2020), 1919–1932.

[54] Steven Whang and Jae-Gil Lee. 2020. Data Collection and Quality Challenges
for Deep Learning. PVLDB 13, 12 (2020), 3429–3432.

[55] Lucas Woltmann et al. 2021. Aggregate-based Training Phase for ML-based
Cardinality Estimation. In BTW (LNI, Vol. P-311). GI, 135–154.

[56] Jingen Xiang, Huangdong Meng, and Ashraf Aboulnaga. 2014. Scalable matrix
inversion using MapReduce. In HPDC. ACM, 177–190.

[57] Eleni Tzirita Zacharatou et al. 2021. The Case for Distance-Bounded Spatial
Approximations. In CIDR.

[58] Steffen Zeuch et al. 2016. Non-Invasive Progressive Optimization for In-
Memory Databases. PVLDB 9, 14 (2016), 1659–1670.

[59] Ying Zhang, Martin L. Kersten, and Stefan Manegold. 2013. SciQL: array data
processing inside an RDBMS. In SIGMOD Conference. ACM, 1049–1052.

http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Array Database Systems
	2.2 Machine Learning Tools
	2.3 Extensions for Database Systems

	3 ArrayQL Grammar
	3.1 Data Definition Language
	3.2 Data Query Language
	3.3 Data Modification Language

	4 In-Database Integration
	4.1 Architecture
	4.2 Array Representation
	4.3 Interaction with SQL

	5 ArrayQL Algebra
	5.1 Rename
	5.2 Function Application
	5.3 Filter
	5.4 Index Manipulation: Shift and Rebox
	5.5 Fill
	5.6 Combining and Joining
	5.7 Reduce for Aggregations

	6 Application of ArrayQL
	6.1 Geo-Temporal Data
	6.2 Linear Algebra with ArrayQL
	6.3 Logical Optimisations

	7 Evaluation
	7.1 Linear Algebra
	7.2 Array Operations

	8 Conclusion
	References

