
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Efficient Code Generation for Pattern Matching
in DBMS

Adrian Riedl

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Efficient Code Generation for Pattern Matching
in DBMS

Effiziente Code-Generierung für die
musterbasierte Suche in DBMS

Author: Adrian Riedl
Supervisor: Prof. Dr. Thomas Neumann
Advisor: Philipp Fent, M.Sc.
Submission Date: January 18, 2023

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, January 17, 2023 Adrian Riedl

Acknowledgments

I would like to express my gratitude to my advisor Philipp Fent and my supervisor Prof.
Dr. Thomas Neumann for the opportunity to work on this interesting topic. Furthermore, I
would like to thank Philipp for his support and time he spent with discussing the different
approaches, giving hints, checking the results and their interpretation, and everything he did
for me. Many thanks to Johannes for proof-reading this thesis, the years of friendship, and
the funny times inside and outside of the lecture halls. I would like to thank many people,
who supported me in my spare time – without you, this thesis would have turned out to be
more difficult.

Lastly, thanks to my wonderful parents, who supported me over all the years and without
whom I would not be, where I am right now.

Abstract

In this thesis, we examine the use of code generation for improving the performance of pattern
matching in database systems. In databases, a text datatype is often used to store information
when there is no appropriate datatype, and pattern matching on these texts is a critical aspect
in many database systems. However, this matching process is often the most costly part of a
query. By using code generation for the matching process, we show that query throughput
can be improved by a factor of up to 2.

We focus on the LIKE expressions, which are offered by SQL to match a given pattern against
input texts. We investigate the advantages of generating code for the exact pattern matching
algorithms, as opposed to the traditional method of interpreting the pattern using hand-
written C++ functions. For the commonly known matching algorithms Knuth-Morris-Pratt
and Boyer-Moore, we explore different strategies to improve their performance. Additionally,
we present a strategy to build an automaton for the pattern, which is used to process the
input text and determine if a pattern is present.

For the discussed algorithms, we explain how these and their optimizations can be imple-
mented in our database system Umbra using its custom code generation framework. The
analysis evaluates the performance differences we could achieve when running several queries
with both the interpreting and the code generating approaches. We also inspect the develop-
ment of the compile time, as well as the effect when running the queries with multiple threads
on a large dataset.

Our results demonstrate that there are multiple factors influencing the performance of
pattern matching algorithms, but that code generation is worth the effort for most workloads.
Our thesis provides insight and guidance for database developers looking to improve the
performance of pattern matching in their systems.

vii

Kurzfassung

In dieser Arbeit untersuchen wir die Verwendung der Codegenerierung zur Verbesserung
der Leistung der musterbasierten Suche in Datenbanksystemen. In Datenbanken wird oft
ein Textdatentyp verwendet, um Informationen zu speichern, wenn es keinen geeigneten
Datentyp gibt, und die musterbasierte Suche für diese Texte ist ein wichtiger Aspekt in
vielen Datenbanksystemen. Dieser Abgleichsprozess ist jedoch oft der kostspieligste Teil einer
Abfrage. Wir zeigen, dass der Abfragedurchsatz durch die Verwendung von Codegenerierung
für den Abgleichsprozess mitunter verdoppelt werden kann.

Wir konzentrieren uns auf die LIKE-Ausdrücke, die von SQL angeboten werden, um ein
bestimmtes Muster mit Eingabetexten abzugleichen. Wir untersuchen die Vorteile der Codege-
nerierung für die exakten Algorithmen zur musterbasierten Suche im Gegensatz zur traditio-
nellen Methode der Interpretation des Musters mit handgeschriebenen C++-Funktionen. Für
die allgemein bekannten Matching-Algorithmen Knuth-Morris-Pratt und Boyer-Moore unter-
suchen wir verschiedene Strategien zur Verbesserung ihrer Leistung. Darüber hinaus stellen
wir eine Idee zur Erstellung eines Automaten für das Muster vor, mit dem der Eingabetext
verarbeitet und das Vorhandensein eines Musters entschieden werden kann.

Für die besprochenen Algorithmen erläutern wir, wie diese und ihre Optimierungen in
unserem Datenbanksystem Umbra unter Verwendung seines eigenen Codegenerierungsge-
rüstes implementiert werden können. Die Analyse bewertet die Leistungsunterschiede, die
wir bei der Ausführung mehrerer Abfragen sowohl mit dem interpretierenden als auch mit
dem codegenerierenden Ansatz erzielen konnten. Wir untersuchen auch die Entwicklung der
Kompilierzeit sowie die Auswirkungen, wenn die Abfragen mit mehreren Threads auf einem
großen Datensatz ausgeführt werden.

Unsere Ergebnisse zeigen, dass es mehrere Faktoren gibt, die die Leistung von Pattern-
Matching-Algorithmen beeinflussen, dass aber die Codegenerierung für die meisten Arbeits-
lasten den Aufwand wert ist. Unsere Arbeit bietet Einblicke und Anleitungen für Daten-
bankentwickler, die die Leistung von musterbasierten Suchen in ihren Systemen verbessern
möchten.

ix

Contents

Acknowledgments v

Abstract vii

Kurzfassung ix

1. Introduction 1
1.1. Motivation . 1
1.2. State of the Art . 2
1.3. Structure . 3

2. Exact String Pattern Matching 5
2.1. LIKE Patterns in SQL . 5
2.2. Knuth-Morris-Pratt Algorithm . 6

2.2.1. Preprocessing . 6
2.2.2. Original KMP . 8
2.2.3. KMP with One Loop . 8
2.2.4. Optimizations . 9

2.2.4.1. Early Return . 10
2.2.4.2. Compression of the LPS Table 10
2.2.4.3. Blockwise Processing . 11

2.3. Boyer-Moore Algorithm . 12
2.3.1. Preprocessing . 12

2.3.1.1. Bad Character Heuristics . 12
2.3.1.2. Good Suffix Heuristics . 13

2.3.2. Original BM . 14
2.3.3. Fast BM . 15
2.3.4. Blockwise BM . 16

2.4. Automaton Approach . 17
2.4.1. Non-Deterministic Finite Automaton for LIKE patterns 17
2.4.2. Deterministic Finite Automaton for LIKE patterns 18

3. Code Generation for Exact String Pattern Matching 21
3.1. Code Generation Framework in Umbra . 21
3.2. Knuth-Morris-Pratt Algorithm . 22

3.2.1. Original KMP . 22
3.2.2. KMP with One Loop . 23
3.2.3. Adding Optimizations to Code Generation Process 25

3.3. Boyer-Moore Algorithm . 27
3.3.1. Original BM . 27
3.3.2. Fast BM . 28
3.3.3. Blockwise BM . 28

xi

Contents

3.4. Automaton Approach . 30
3.4.1. Direct Translation . 30
3.4.2. Blockwise Translation . 31

3.5. Concatenating Multiple Subpatterns . 32

4. Evaluation for Exact String Pattern Matching 33
4.1. Experimental Setup . 33

4.1.1. Hardware Specification . 33
4.1.2. Data and Queries . 33

4.1.2.1. TPC-H Data . 33
4.1.2.2. ClickBench . 34

4.1.3. Query Settings . 34
4.2. Results . 35

4.2.1. Knuth-Morris-Pratt Algorithm . 35
4.2.1.1. Regular LPS Table . 35
4.2.1.2. Compressed LPS Table . 38

4.2.2. Boyer-Moore Algorithm . 39
4.2.3. Automaton Approach . 41
4.2.4. Comparison of the Code Generating Algorithms 42
4.2.5. Compilation Time . 44
4.2.6. ClickBench Results . 45

5. Non-Exact Pattern Matching 49
5.1. Extended Automaton Approach . 49

5.1.1. Extended Like-NFA . 49
5.1.2. Extended Like-DFA . 50

5.2. Reduced Automaton Approach . 52

6. Conclusions and Outlook 55
6.1. Code Generation Independent Insight . 55
6.2. Code Generation Dependent Insight . 56
6.3. Outlook . 56

A. Blockwise Processing 59
A.1. Blockwise Search for ASCII character - Example 59
A.2. Blockwise Search for Non-ASCII character . 60

B. Determinization of Like-NFA 61

C. Distribution of ClickBench Dataset 63

List of Figures 65

List of Tables 67

Listings 69

Bibliography 71

xii

1. Introduction

Pattern matching is a prevalent problem in various fields of computer science, with a wide
range of applications: the Unix command grep to search for certain patterns in files; in internet
browsers to scan through massive amounts of text available online for specific keywords; online
newspapers to filter the articles based on the field of interests; online journals allowing to scan
through the content for specific catchwords; and several specialized databases, especially in
the field of molecular biology to process patterns on the stored DNA or RNA strings.

Given the numerous applications, exact pattern matching has been an extensively researched
topic in the past. With the advancement in technology and the widespread availability of
search functions in various software, it is now considered a granted functionality. However,
libraries such as Google’s re21, the Regex class from Microsoft’s .NET framework2, and
modules of programming languages like std::regex from the C++ standard library3 or the re
module of python4 are still actively developed to improve the speed and efficiency of pattern
matching. All of those deal with matching given regular expressions against an input text.
For those libraries, it is not only about searching the pattern in the text, but also about doing
this as fast as possible.

Relational databases also need to be able to evaluate pattern matching expressions in their
queries, and thus, it is essential to process the data quickly while maintaining precision. SQL
syntax allows for the use of LIKE expressions, which are a somewhat weakened version of
regular expressions in terms of the matching process.

1.1. Motivation

Standardized benchmarks like TPC-H or TPC-C are commonly used to evaluate the perfor-
mance of both academic and industrial database systems. These benchmarks primarily test the
functionalities of the database system, such as the ability of the optimizer to find the best join
order or the correct implementation of the individual operators. However, as Vogelsgesang et
al. discuss in their paper [Vog+18], these benchmarks may not accurately reflect the real-world
challenges that a database system needs to manage. Through their analysis of over 60k data
repositories and the generated query workload, they identify several insights.

One of the key findings of their study is that almost 50% of the attributes of the tuples in
the analyzed datasets are stored as text. This highlights the importance of efficient pattern
matching, as it is a critical component of query performance on these datasets. Due to this,
LIKE pattern matching in database systems is not yet fully solved.

1https://github.com/google/re2 (accessed: 03.12.2022)
2https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions (accessed:

03.12.2022)
3https://en.cppreference.com/w/cpp/regex (accessed: 03.12.2022)
4https://docs.python.org/3/library/re.html (accessed: 03.12.2022)

1

https://github.com/google/re2
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://en.cppreference.com/w/cpp/regex
https://docs.python.org/3/library/re.html

1. Introduction

In 2011, Alfons Kemper and Thomas Neumann introduced the research database HyPer,
a pure main memory database for both OLTP and OLAP workloads [KN11]. Later, Thomas
Neumann proposed a data-centric approach for generating and compiling compact and
efficient machine code using the LLVM compiler framework for queries in relational database
systems [Neu11]. This approach offers a new way to evaluate LIKE expressions in relational
database systems by generating code for the matching process instead of interpreting the
pattern. The traditional approach is to use a hand-written function in the database system
to perform the pattern matching on the input text. By using the code generating approach,
the matching process is integrated into the generated code for the entire query, replacing the
function call in the interpreting approach.

This thesis presents a detailed examination of how to integrate pattern matching for LIKE
expressions into the compiling database engine Umbra, an evolution of the pure main memory
database system HyPer towards a SSD-based system [NF20]. It explores different exact pattern
matching algorithms in both the interpreting and code generating versions, as well as various
modifications and optimizations. Through this examination, it aims to answer the question of
whether to interpret or generate code for pattern matching expressions in queries.

1.2. State of the Art

Regular expression matching can be improved by using code generation and just-in-time tech-
niques. There are several libraries such as Google’s re2 library, Microsoft’s .NET framework,
and the re module of the programming language python that use code generation to convert
the given regular expression pattern into an internal representation of bytecode. In the case of
the python’s re module, the internal representation is executed by a matching engine written
in C. Google’s re2 represents the regular expression as an automaton in bytecode, which is
then interpreted by the execution engine. Microsoft’s .NET framework is an exception, as
it provides an option to compile the regular expression to machine code when creating a
regular expression object. This option uses a just-in-time compiler to convert the expression to
native machine code. However, this option needs to be set explicitly, otherwise the internal
representation is interpreted [Mic].

The concept of generating code to match regular expressions dates back to 1968, when
Ken Thompson presented a method to produce an IBM 7094 program as object language
from a regular expression to locate a specific character sequence in a character text [Tho68].
Today, many regular expression matchers use internal representations to perform matching.
However, there is only a limited number of projects that aim to generate and execute machine
code to support regular expression matching at runtime.

As code generation has become widely accepted in the database system community [ALX16;
Dia+13; Hof16; WL14], it is interesting to investigate the benefits of generating code for the
matching process instead of interpreting a given pattern for a query. To examine this, we will
focus on a simplified version of regular expressions, specifically LIKE expressions, which are
offered in SQL. Through this investigation, we aim to make a contribution to both the database
and regular expression communities by reevaluating the capabilities of code generation for
the purpose of pattern matching.

2

1.3. Structure

1.3. Structure

The outline of this thesis is as follows. In Chapter 2, we provide the necessary foundations
for our research. Sect. 2.1 introduces the LIKE pattern in SQL and the available wildcards.
Sections 2.2, 2.3, and 2.4 present the algorithms that we focus on in this thesis for pattern
matching and their adaptions to improve the search process.

In Chapter 3, we summarize the code generation process of Umbra in Sect. 3.1. Sections 3.2,
3.3, and 3.4 explain the code generation process for the Knuth-Morris-Pratt, Boyer-Moore, and
Automaton algorithms respectively, highlighting the optimizations included in each process.

Chapter 4 presents the results of the experiments to compare the performance of code
generation with an interpreting version. In Sect. 4.1, we describe the hardware and the
experimental setup used. Sect. 4.2 presents the results of our experiments and explains the
observed behavior. We evaluate each algorithm individually before comparing them in one
graph. Additionally, we include the effect of compilation time in Sect. 4.2.5 and the results
when running queries on a larger dataset with multiple threads in Sect. 4.2.6.

In Chapter 5, we present two approaches to manage non-exact pattern matching for LIKE
expressions in Umbra. Both ideas are based on the idea of the Automaton Approach.

At the end of this thesis, the outcome of the experiments is presented in Chapter 6. Therefore,
we summarize what we could figure out and present the facts split up in two parts; the first is
in Sect. 6.1 and describes everything that applies for both interpreting and code generating
cases, while Sect. 6.2 highlights the outcome of our comparison. Finally, Sect. 6.3 presents
some ideas of future work to be done on the basis of this project.

3

2. Exact String Pattern Matching

Focusing on exact pattern matching in relational database systems, let us assume we want to
count all students who contain the pattern ’en’ in their name. To accomplish this, we must
iterate through all student records, process their names, and check for an exact match with
the desired pattern. Efficient and reliable pattern matching algorithms are crucial to avoid
performance issues in such queries.

To perform such a matching process, SQL offers the LIKE expression which will be discussed
in Sect. 2.1. Focusing on exact pattern matching in this chapter, we present the Knuth-Morris-
Pratt algorithm in Sect. 2.2 and introduce some optimizations which can be applied to speed
up the search. Sect. 2.3 covers the Boyer-Moore algorithm and Sect. 2.4 covers the Automaton
Approach, where the pattern is converted into an automaton and used to evaluate the input
text.

2.1. LIKE Patterns in SQL

According to the SQL-92 standard [Iso] and the PostgreSQL documentation [Pos], the LIKE
expression in SQL is used to match a text with a specific pattern. The syntax for this expression
is as follows: string LIKE pattern [ESCAPE escape-character]. The pattern can contain
two wildcards: the underscore _ represents a match with any single character and the percent
sign % represents a match with any sequence of zero or more characters. If the pattern does
not contain any wildcard, the pattern represents the string itself and the operator acts like an
equals operator. For exact pattern matching, the pattern must only contain percent wildcards.

To match a literal underscore or percent sign without interpreting the character as a wildcard,
the escape character must precede the corresponding character. The default escape character
is the backslash \, but a custom one can be defined by using the ESCAPE clause. To match
the escape character itself, it must be written twice.

Example. Let us consider the following pattern: red%green%blue. For a given input text to
be considered a match, it must start with the character sequence red, contain green somewhere
in the middle, and end with blue. In Table 2.1, we present examples of texts and whether they
are accepted or not based on this pattern.

From this example, it can be seen that the pattern can be broken down into several parts:
the prefix, the suffix, and the patterns in between. In exact pattern matching, the prefix and
suffix can be checked at the start and end of the input text directly. However, for patterns
surrounded by two percent wildcards, a pattern matching algorithm must be applied to search
for those within the input text. Unless stated otherwise, we will refer to this process of finding
the subpatterns surrounded by two % wildcards.

5

2. Exact String Pattern Matching

text accepted explanation
red orange green purple blue ✓
red orange purple green blue ✓

red orange green blue purple ✗ suffix mismatches
red orange purple blue ✗ pattern green is not found

Table 2.1.: Example texts and results for the pattern red%green%blue. Bold part of the text
means an expected match with the pattern; italics means a mismatch.

2.2. Knuth-Morris-Pratt Algorithm

In 1977, Knuth, Morris, and Pratt introduced an algorithm for performing exact string pattern
matching to find all occurrences of a given pattern in a text [KMP77]. The objective of the
algorithm is to find the pattern in the text without the need to backtrack in the input text and
to only use the information from the pattern itself to determine where the search continues.
This means that, once a character from the input text at index i is read, no character from an
index smaller than i will be read again. Before executing the algorithm, the pattern needs to be
preprocessed as discussed in Sect. 2.2.1. Then, we will consider two different implementations
of the KMP algorithm:

1. Original KMP in Sect. 2.2.2

2. KMP with One Loop in Sect. 2.2.3.

Finally, we discuss three optimizations in Sect. 2.2.4 and explain how to apply them to the
KMP algorithms to speed up the search.

2.2.1. Preprocessing

In the preprocessing phase of the KMP algorithm, the longest proper prefix which is also
proper suffix (lps) is searched for each substring of the pattern from its start up to the given
position i. Therefore, let us introduce a formal definition of the terminology [Lan01b]:

Definition: Let A be an alphabet and x = x0 . . . xk−1, k ∈N be a string of length k over A.

Prefix: A prefix of x is a substring u with u =

{
ϵ b = 0

x0 . . . xb−1 b ∈ {1, . . . , k}
i.e. x starts with u.

Suffix: A suffix of x is a substring u with u =

{
ϵ b = 0

xk−b . . . xk−1 b ∈ {1, . . . , k}
i.e. x ends on u.

Proper Prefix/Suffix: A prefix u of x / suffix u of x is called proper prefix/suffix if u ̸= x, i.e.
its length b is less than k.

Border: A border of x is a substring r =

{
ϵ b = 0

x0 . . . xb−1 = xk−b . . . xk−1 b ∈ {1, . . . , k}
.A border

of x is a substring that is both proper prefix and proper suffix of x. b denotes the width
of the border.

6

2.2. Knuth-Morris-Pratt Algorithm

In the preprocessing phase of a pattern p, we compute a lps array with the length |p|+ 1.
Each entry lps[i] contains the width of the widest border of the prefix of length i of the pattern
p with i ∈ {0, . . . , |p|}. For the prefix ϵ of length i = 0, we set lps[0] = −1.

Listing 2.1 shows the algorithm to compute the lps array for a given pattern.

1 preprocess(pattern)
2 vector<int> lps(pattern.size() + 1, 0);
3 i = 0, j = -1;
4 lps[i] = j;
5

6 while (i < pattern.size())
7 while (j >= 0 && pattern[j] != pattern[i])
8 j = lps[j];
9 i++; j++;

10 lps[i] = j;
11 return lps;

Listing 2.1: Preprocessing of KMP

As presented in Fig. 2.1, the lps table is used to determine the shift after a mismatch
occurred when comparing the pattern and text. If at position i in the text there is a mismatch
with the jth character of the pattern, then the entry in the lps table holds the length of the
suffix α which is also the longest proper prefix of the compared part of the pattern. Using this
value, we can directly determine how to shift the pattern to correctly align its prefix α and can
continue the search at position lps[j].

Example. Table 2.2 presents the calculation of the lps table for the pattern abaa step by step.
Therefore, we extract the prefix of the pattern with the length of i and analyze this prefix to
find the longest proper prefix which is also suffix. Its length is then stored at the index i in
the lps table. In the visualization, the stored numbers are printed bold to show which have
already been calculated.

compare

text

i

α

E
pattern α α

jlps[j]

shift α

j = lps[j]

Figure 2.1.: Visualization of the shift of the pattern when mismatch at j occurs

7

2. Exact String Pattern Matching

i a b a a determine lps[i]
0 0 0 0 0 0 prefix = ϵ → lps[0] = −1
1 -1 0 0 0 0 prefix = a→ lps[1] = 0
2 -1 0 0 0 0 prefix = ab→ lps[2] = 0
3 -1 0 0 0 0 prefix = aba→ lps[3] = 1
4 -1 0 0 1 0 prefix = abaa→ lps[4] = 1

-1 0 0 1 1

Table 2.2.: Process to build the lps table for the pattern abaa. The bold numbers were already
calculated in the previous iterations.

2.2.2. Original KMP

The pseudocode for the Original KMP algorithm, as proposed by Knuth, Morris, and Pratt
in [KMP77], is presented in Listing 2.2: The first step of the algorithm is to preprocess the
pattern to calculate the corresponding lps table (line 2). In line 5, we start iterating over the
text from left to right. In the lines 6 - 10, the current character of the text is compared with the
corresponding character from the pattern. In case of mismatching characters, the position in
the pattern is updated by reading the shift from the lps table; in case of matching characters,
based on the position in the pattern, either a match is reported or the position in the pattern
is incremented (line 10). Finally, as the iteration over the input text progresses, the position in
the text is incremented by one (line 11).

1 O-KMP(text, pattern)
2 lpsTable = preprocess(pattern);
3 pPos = 0, tPos = 0;
4

5 while (tPos < text.size())
6 while (pPos && pattern[pPos] != text[tPos])
7 pPos = lpsTable[pPos];
8 if (pattern[pPos] == text[tPos])
9 if (pPos == pattern.size() - 1) return true; // pattern found

10 else pPos++;
11 tPos++;
12 return false; // pattern not found

Listing 2.2: Original KMP (O-KMP)

Example. We search for the pattern abaa in the text ababacabaa. As in Listing 2.2, tPos
refers to the position in the text and pPos to the position in the pattern. Table 2.2 shows the
lps table, the result of the preprocessing of the given pattern; in Table 2.3, the previously
discussed algorithm is performed and explained step by step.

2.2.3. KMP with One Loop

The Original KMP algorithm can also be implemented with only one loop. The corresponding
pseudocode can be found in Listing 2.3. The first step in line 2 is to preprocess the pattern by
generating the lps table. The algorithm also iterates from left to right over the input text and

8

2.2. Knuth-Morris-Pratt Algorithm

tPos pPos a b a b a c a b a a
0 0 a b a a characters match
1 1 a b a a characters match
2 2 a b a a characters match
3 3 a b a a mismatch, pPos← lps[3] = 1
3 1 a b a a characters match
4 2 a b a a characters match
5 3 a b a a mismatch, pPos← lps[3] = 1
5 1 a b a a mismatch, pPos← lps[1] = 0
5 0 a b a a mismatch, pPos = 0, increment tPos
6 0 a b a a characters match
7 1 a b a a characters match
8 2 a b a a characters match
9 3 a b a a pattern found

Table 2.3.: KMP search for pattern abaa in text ababacabaa

checks if the characters at the text and pattern position match (line 6). In case of a match, the
positions are incremented and in line 8, we check if the pattern end is reached, in which case,
we return that a match was found. If not, the algorithm continues. In case of no match, the
shift is looked up in the lps table to find out where the search needs to continue (line 10). Due
to the construction of the lps table, we need to add a check whether the shift is negative. If it
is, the first character of the pattern mismatched, so the pattern can be moved one position to
the right to restart the search from the pattern start, as no more information is available at this
point (line 11); otherwise, the position in the pattern is updated to the shift and the search
continues (line 12).

1 OL-KMP(text, pattern)
2 lpsTable = preprocess(pattern);
3 pPos = 0, tPos = 0;
4

5 while (tPos < text.size())
6 if (pattern[pPos] == text[tPos])
7 pPos++; tPos++;
8 if (pPos == pattern.size()) return true; // match found
9 else

10 shift = lpsTable[pPos];
11 if (shift < 0) pPos = 0; tPos++;
12 else pPos = shift;
13 return false; // no match found

Listing 2.3: KMP with One Loop (OL-KMP)

2.2.4. Optimizations

In this section, we present three optimization ideas that can be used to improve the perfor-
mance of the KMP algorithm when searching for a specific pattern in an input text. These
techniques are assumed to be effective for sufficiently large alphabets. The first optimization,
presented in Sect. 2.2.4.1, allows for early termination of the algorithm if the remaining text

9

2. Exact String Pattern Matching

length is insufficient for a match. The second optimization, presented in Sect. 2.2.4.2, is specific
to the KMP algorithm. Lastly, the third optimization discussed in Sect. 2.2.4.3 is more general
and can be applied to other algorithms as well.

2.2.4.1. Early Return

The first optimization we implement in all KMP algorithms is the early return. This means we
do not iterate over the entire input text, but instead check in each iteration if the end of the
pattern is still within the text. By doing this, we can stop the comparison once the pattern end
goes beyond the text end, as no match can be found in this scenario. In future visualizations
of the control flow for the generated code, we will directly use this improved loop condition.

2.2.4.2. Compression of the LPS Table

The compression of the lps table can help avoid the “bouncing ball” effect observed in the
Original KMP algorithm as discussed by Dan Gusfield in [Gus97, p. 48-52]. This refers to
the scenario where the same letter in the pattern is seen consecutively at different positions
multiple times. When looking at the regular lps table of the pattern abaabab presented in
Table 2.4, let us assume the character a at index 5 has a mismatch with the character from the
input text. Then, the position in the pattern is updated to index 2 at which again the letter a is
found. As this letter also mismatches, the position in the pattern is updated to the position 0.
The result of these jumps is that the pattern needs to be shifted one to the right of the current
position in the text and begin the search from the pattern start.

To avoid this jumping, the preprocess function needs to be modified as presented in
Listing 2.4. Compared with the original preprocessing algorithm, the only change is in line 10.
In this line, we now do not directly set the entry to the lps table, but check whether the
characters at the positions are equal and choose the corresponding value for the entry.

Table 2.4 also shows the result of the compressed preprocessing function for the pattern
abaabab. By using the compressed version of the preprocessing, the number of comparisions
between the character from the pattern and from the input text and also the jumps backwards
in the pattern can be reduced. However, the Original KMP algorithm needs to be adapted to
work with the compressed lps table properly.

index 0 1 2 3 4 5 6
pattern a b a a b a b

regular lps table -1 0 0 1 1 2 3 2
compressed lps table -1 0 -1 1 0 -1 3 2

Table 2.4.: Regular and compressed LPS table for the pattern abaabab. The arrows visualize
the “bouncing ball” if a mismatch at index 5 occurred.

10

2.2. Knuth-Morris-Pratt Algorithm

1 preprocessCompressed(pattern)
2 vector<int> lps(pattern.size() + 1, 0);
3 i = 0, j = -1;
4 lps[i] = j;
5

6 while (i < pattern.size())
7 while (j >= 0 && pattern[j] != pattern[i])
8 j = lps[j];
9 i++; j++;

10 lps[i] = (pattern[i] == pattern[j]) ? lps[j] : j;
11 return lps;

Listing 2.4: Compressed preprocessing of KMP

2.2.4.3. Blockwise Processing

An alternative way to improve the performance of the search is to optimize the process of
finding the first character of the pattern. In real-world text inputs, it is common for the first
character of the pattern to mismatch frequently. This results in the KMP algorithm repeatedly
moving one character forward. To avoid this, blockwise processing can be used to quickly
find the first character of the pattern.

Listing 2.5 demonstrates how to use bitwise operations to check if the ASCII character ’c’
is present in ’block’. You can find an example of this function in Appendix A.1. Additionally,
we have provided a modified version of the function to search for a character whose highest
bit is set to 1, along with a corresponding example in Appendix A.2.

1 uint64_t block = loadNext8Bytes(...);
2 uint64_t searchedChar = broadcast(c); // broadcast c to each byte
3 const uint64_t high = 0x8080808080808080ull;
4 const uint64_t low = ~high;
5 uint64_t lowChars = (~block) & high;
6 uint64_t found = ~((((block & low) ^ searchedChar) + low) & high);
7 uint64_t matches = found & lowChars;
8 bool matchFound = matches != 0;

Listing 2.5: Blockwise search for ASCII character c

11

2. Exact String Pattern Matching

2.3. Boyer-Moore Algorithm

The Boyer-Moore algorithm, published in 1977 by Boyer and Moore, is a widely-used method
for searching a given pattern in an input text [BM77]. The original paper presented the
algorithm but not the necessary preprocessing of the pattern. A follow-up paper was published
with the preprocessing information, but it contained errors that were corrected by Rytter in
1980 [Ryt80].

The basic idea of the algorithm is to scan the pattern from right to left and on mismatches,
one of the shift rules are applied, which are the result of the preprocessing. In Sect.2.3.1, we
will discuss the preprocessing of the algorithm. We will also explain the different versions of
the algorithm presented in the original paper in Sect. 2.3.2 and 2.3.3. Finally, we will introduce
an idea on how to add blockwise processing to the Boyer-Moore algorithm in Sect. 2.3.4.

2.3.1. Preprocessing

The Boyer-Moore algorithm has a preprocessing phase which includes two parts: the Bad
Character Heuristics and the Good Suffix Heuristics. When the algorithm is executed, both
rules are applied and the maximum possible shift is chosen. However, it is also possible to
use only one of the rules and set the shift of the other rule to 1.

2.3.1.1. Bad Character Heuristics

The Bad Character Heuristics (BCH) is a preprocessing technique used in the Boyer-Moore
algorithm to improve the performance of pattern matching. The basic idea behind BCH is
to shift the pattern when a mismatch occurs between the input text and the pattern. The
preprocessing step for BCH involves creating a table for all possible characters in the input
alphabet. For each character in the pattern, the table contains the distance of its right-most
position in the pattern to the end of the pattern. For all other characters, the shift distance is
set to the length of the pattern.

When a mismatch occurs between the input text and the pattern, the algorithm checks the
BCH table for the mismatched character. If the character is present in the pattern, the pattern
is shifted so that the right-most occurrence of that character in the pattern aligns with the
mismatched character in the text. However, if the character is not present in the pattern, the
pattern is shifted to the right of the mismatched character. In Table 2.5, we show how the BCH
can be applied to the search, once if the text character is present in the pattern and once if not.

While BCH can greatly improve the performance of the Boyer-Moore algorithm, it can
also cause negative shifts. A negative shift occurs when the right-most occurrence of the
mismatched character of the text is to the right of the current position in the pattern. This can
lead to the pattern being shifted back and forth, making it impossible to find the matching
part in the text. To resolve this shifting issue, the pattern needs to be moved to the right by 1
and restart the search. Table 2.6 presents a compact example of a negative shift which must
not be performed. In this example, the pattern would always be shifted back and forth and
the matching part in the text would not be found.

12

2.3. Boyer-Moore Algorithm

1 preprocessBad(pattern)
2 vector<int> δ1(256, pattern.size());
3 for (i = 0; i < pattern.size(); i++)
4 δ1[pattern[i]] = pattern.size() - 1 - i;
5 return δ1;

Listing 2.6: Preprocessing for the Bad Character Heuristics

a b a b a c a b a a
a b a a mismatch, character b on index 1→ shift by 2

a b a a mismatch, character c not in pattern→ shift by 4
a b a a pattern found

Table 2.5.: Search for pattern abaa in text ababacabaa using Bad Character Heuristics

a a a a b a b
a b a b mismatch, character a on index 2

a b a b mismatch, character a on index 2
a b a b must not shift to the left

Table 2.6.: Negative shift with Bad Character Heuristics

2.3.1.2. Good Suffix Heuristics

The Good Suffix Heuristics (GSH) is a technique used to optimize the Boyer-Moore algorithm
by determining the maximum possible shift for a given mismatch. To explain the Good Suffix
Heuristics, let us consider Fig. 2.2, adapted from [Lan01a]:

Case A: For a given alignment of the pattern with the text, assume that the suffix α of
the pattern matches a substring of the text, but a mismatch x ̸= y occurs at the next
comparison to the left of the suffix. Let α′ be the right-most copy of α in the pattern with
the preceding character z ̸= y. We can now shift the pattern to align the occurrence of α

in the text with the occurrence of α′ in the pattern.

Case B: If no such substring α′ in the pattern exists, we try to align a prefix of the pattern
with a matching suffix of α. If this is not possible, then the left side of the pattern is
aligned with the right side of α in the input text, so the pattern is shifted completely to
the right of the occurrence α.

The preprocessing phase for GSH involves creating a lookup table that stores the maximum
shift for each position in the pattern. Listing 2.7 presents the pseudocode for generating the
lookup table. The algorithm starts by iterating through the pattern from right to left and
checking for any prefixes that match the suffix of the pattern. If a match is found, the index is
stored for further calculations. Then, for each position in the pattern, the algorithm calculates
the maximum shift by considering the distance of the current position to the right and the last
known position of the prefix in the pattern. This allows for efficient alignment of the pattern
in the event of a mismatch.

13

2. Exact String Pattern Matching

In the second loop, Case A is processed by iterating over the pattern from left to right,
identifying the size of the longest suffix of the current substring that is also a suffix of the
larger pattern. With this size, we update the entry in the table corresponding to the index
of the longest possible suffix of the larger pattern. This value is the shift required to align
the characters currently matching the suffix of the pattern with the suffix characters of the
subpattern plus the number of characters to set the text position to the end of the aligned
pattern.

1 preprocessGood(pattern)
2 δ2 = vector<int>(pattern.size());
3 lastPrefixPosition = pattern.size();
4

5 for (i = pattern.size(); i > 0; --i)
6 // isPrefix(pat, pos) returns
7 // pat[0 ... pat.size - pos[== pat[pos ... pat.size[
8 if (isPrefix(pattern, i)) lastPrefixPosition = i;
9 δ2[i - 1] = lastPrefixPosition + pattern.size() - i;

10 for (i = 0; i < pattern.size() - 1; ++i)
11 // suffixSize(pat, pos) returns the maximal length of the suffix
12 // of pat[0 ... pos] which is also suffix of pat
13 δ2[pattern.size() - 1 - size] = pattern.size() - 1 - i + suffixSize(pattern, i);
14 return δ2;

Listing 2.7: Preprocessing for the Good Suffix Heuristics

2.3.2. Original BM

Boyer and Moore present two versions for their algorithm in [BM77]. The pseudocode for the
original version is given in Listing 2.8: As the first two steps, the pattern is preprocessed to
get the BCH table δ1 and the GSH table δ2. Next, the pattern is aligned with the text and the
position in the text is set to point to the character aligned with the last character of the pattern.
In the loop, we iterate over the input text as long as the input is not exhausted. As we always
compare the pattern from right to left, we set pPos, the position in the pattern, to point to the

compare

text x α

E
Case A: pattern αyz α′

shift αyz α′

Case B: pattern

shift

Figure 2.2.: Visualization of the shift by the Good Suffix Heuristics

14

2.3. Boyer-Moore Algorithm

last character of the pattern. In the inner loop, we compare the character from the pattern and
from the text and move one character to the left if both coincide. Once a mismatch occurred
or the index 0 of the pattern is reached, the inner loop stops; if pPos is 0, we know that nearly
the complete pattern matches and we only have to check whether the first character and its
aligned character in the text are the same. If that holds, then we can return successfully as the
pattern was found in the text. If there was a mismatch before or the first character did not
match, then we get the shift values from the tables δ1 and δ2 and shift the pattern by adding
the maximum of the two values to the position in the text. With that, we move the alignment
of the right end of the pattern to the right and the next matching phase can start.

1 O-BM(text, pattern)
2 δ1 = preprocessBad(pattern);
3 δ2 = preprocessGood(pattern);
4

5 pPos = pattern.size() - 1;
6 tPos = pPos;
7

8 while (tPos < text.size())
9 pPos = pattern.size() - 1;

10 while (pPos && begin[tPos] == pattern[pPos])
11 pPos--; tPos--;
12 if (!pPos && begin[tPos] == pattern[pPos]) return true;
13 tPos += max(δ1[begin[tPos]], δ2[pPos]);
14 return false;

Listing 2.8: Original BM (O-BM)

2.3.3. Fast BM

In [BM77], the authors also discuss an improved version of the algorithm which we call Fast
BM (F-BM). The idea behind this modification is that most of the time, the algorithm is in
the situation that the character of the text with which the last pattern character is aligned
mismatches and leads to a shift of the pattern, so basically the idea of the Bad Character
Heuristics from Sect. 2.3.1.1.

Listing 2.9 shows how the fast version can be implemented. When preprocessing, we again
generate the tables δ1 and δ2, but also a table δ0. This table is a copy of δ1, replacing the entry
for the last character of the pattern with the value large. The value large must be greater than
the sum of the text length and pattern length. The algorithm now adds the entry of δ0 to
the position in the text. With that, the pattern is either shifted to the right according to the
BCH or the position is greater than or equal to large. In the case of shifting, we know that
the shift is always to the right, as we are comparing the last character of the pattern. In the
other case, the value of the position in the text indicates that we have found the last character
of the pattern. So, we need to enter the matching phase to check the remaining pattern. We
calculate the original position which is aligned with the second last character of the pattern
and the corresponding position in the pattern. If necessary, we then perform the matching
and shifting phase as in the original version. The only exception is to add a special handling
of patterns which are only one character long because then, we can directly return if the last
character of the pattern was found in the text.

15

2. Exact String Pattern Matching

1 F-BM(text, pattern)
2 // large > text.size() + pattern.size() must hold for all inputs
3 large = 1 << 48;
4 pPos = pattern.size() - 1;
5 tPos = pPos;
6

7 δ1 = preprocessBad(pattern);
8 δ2 = preprocessGood(pattern);
9 δ0 = δ1;

10 δ0[pattern[pattern.size() - 1]] = large;
11

12 while (tPos < text.size())
13 tPos += δ0[begin[tPos]];
14 if (tPos >= large)
15 tPos = tPos - large - 1;
16 if (pattern.size() == 1) return true;
17 else
18 pPos = pattern.size() - 2;
19 while (pPos && begin[tPos] == pattern[pPos])
20 pPos--; tPos--;
21 if (!pPos && begin[tPos] == pattern[pPos]) return true;
22 tPos += max(δ1[begin[tPos]], δ2[pPos]);
23 return false;

Listing 2.9: Fast BM (F-BM)

2.3.4. Blockwise BM

Considering the idea of the Fast BM, we can also apply the blockwise processing to search for
the last character of the pattern. The Fast BM scans through the text character by character
and implicitly matches the characters by adding the value large to the position in the text. To
speed up that search, we can replace this byte-by-byte search with a blockwise search for the
last character.

In this proposed algorithm, we search for the last character of the pattern using blockwise
processing. Once an occurrence was found, we perform the comparison of the remaining
pattern from right to left. In case of a mismatch, the pattern is shifted according to the
precalculated tables. After the shift, we again search for the last character of the pattern; once
another occurrence is found, we restart the comparison.

16

2.4. Automaton Approach

2.4. Automaton Approach

In this section, we present a new method for string pattern matching using automata. Unlike
a similar approach for DNA sequence matching in molecular biology, as presented in [Per+09],
our method is more versatile, as it is working on an arbitrarily large alphabet, allowing to
match both ASCII and Non-ASCII characters.

On the other hand, when dealing with the more general type of patterns, the regular
expressions, the Thompson algorithm can be used to translate regular expressions into a non-
deterministic finite automaton (NFA) [Tho68], which can then be converted into a deterministic
finite automaton (DFA) using the powerset construction. However, this can result in a large
number of states in the DFA. To minimize the number of states while preserving matching
capabilities, the Hopcroft algorithm can be applied [Hop71]. However, this adds additional
computational complexity.

Our approach addresses the challenges of the limitations of the fixed alphabet size and the
computational complexity. We present a new method for building a Like-DFA from an pattern
for exact pattern matching, with this method having no limitations and being able to handle
matching both ASCII and Non-ASCII characters. This approach is more versatile and can be
used for pattern matching.

DFA: A deterministic finite automaton consists of

• a finite number of states Q,

• a (finite) input alphabet Σ,

• a transition function δ : Q× Σ→ Q,

• a start state q0 ∈ Q, and

• a set of end states F ⊆ Q

Due to the transition function, each state has only one transition for each character of
the alphabet.

NFA: A non-deterministic finite automaton (NFA) is a generalization of a DFA, as each state
of an NFA can have 0, 1, or more transitions with the same letter from the alphabet.

• Q, Σ, q0, and F same to DFA

• a transition function δ : Q× Σ→ P(Q) with P(Q) = 2Q

Upon examination of the potential patterns, their structure, and the available wildcards for
LIKE expressions, it becomes apparent that the concept of LIKE expressions is a simplified
version of regular expressions. With this understanding, we can utilize the idea of translating
the pattern into a non-deterministic finite automaton and subsequently determinizing the
automaton. This automaton can then be utilized to generate code for the given pattern and
determine whether the pattern is accepted or not.

2.4.1. Non-Deterministic Finite Automaton for LIKE patterns

Given the information discussed above and the definition of NFAs, we propose a method to
generate a specialized NFA specifically for LIKE patterns, referred to as the Like-NFA. To
construct the automaton, we employ a straightforward approach: Initially, we create a start

17

2. Exact String Pattern Matching

state. Next, we iterate through the pattern from left to right and make decisions based on the
current character:

% : add a loop to the last state accepting Σ

ESC : go to the escaped character α and add edge accepting α to the last state going to a
newly added state at the end

α ∈ Σ : add edge accepting α to the last state going to a newly added state at the end

By implementing the algorithm, we can easily convert a pattern into a Like-NFA. When
storing the transitions, we distinguish between two types of transitions: the forward transition,
which takes us from one state to the next one (all states have exactly one, only the last state
has none), and the normal transitions, which are up to this point only the loops accepting
Σ. By introducing Σ transitions, we accept all characters, even if the state has an explicit
transition for this character.

Fig. 2.3 depicts the resulting Like-NFA for the pattern %abaa%. Similar to the percent
wildcards at the begin and end of the pattern, the automaton has two loops at the start and
end state. In between, the forward transitions of the states represent the pattern by connecting
each other.

2.4.2. Deterministic Finite Automaton for LIKE patterns

With the current Like-NFA, we cannot immediately generate code to verify if the pattern is
present in an input text. To accomplish this, we need to determinize the automaton, so, the
classic approach to use the powerset construction would be straightforward. However, as the
name suggests, this may result in exponential growth of states in the automaton, thus it is not
an ideal solution.

Additionally, it is not necessary to process the entire automaton at once. For the prefix and
suffix, we do not need to determinize the automaton, as we know the start and end of the
input text and can examine them in sequence. The remaining pattern can be divided into
subpatterns which begin at a state with a loop and end at the next state with a loop (essentially,
a subpattern is the part of the pattern between two percent wildcards). Furthermore, it is
sufficient to process the subpatterns individually, as we know that once one subpattern has
been found, the following ones must appear completely after the found one, as the subpatterns
must not overlap.

Determinizing Like-NFA. In our approach, we employ the concept of the longest prefix
which is also a proper suffix, drawing inspiration from the KMP algorithm (as outlined in
Sect.2.2), while determinizing the automaton. During this process, we traverse our states

q0 q1 q2 q3 q4
a b a a

Σ Σ

Figure 2.3.: Like-NFA for pattern %abaa%

18

2.4. Automaton Approach

sequentially, add transitions of the lps state that are not present in the current state, and
update the lps when progressing to the next state. This is achieved by distinguishing between
the forward transition and other transitions. In Listing 2.10, we demonstrate the concept of
converting a Like-NFA into a Like-DFA for a subpattern surrounded by two percent wildcards.

The determinization needs to be done for each subpattern in the input Like-NFA. At
initialization, we get the required pointers (line 2-4): the start and end state of the subpattern
which is next to be processed. The pointer to the lps state is set to the start state of the
subpattern and the pointer for the current state is the state following the lps state. With this
initialization, we start iterating through the subpattern until the current pointer reaches the
subpattern end. For each state, we add the transitions and the forward transition of the lps
state to the transitions of the current state if the character of the corresponding transition is
not the character of the forward transition of the current state (line 7-12). So, we achieve that
if we are at a state and read a certain character from the input text, we have two cases for
this character: the first case is that the character matches the forward transition character of
the current state and we then take this transition to the next state; the other case is that the
character does not match the forward transition character. In this situation, the lps pointer
indicates in which state the longest proper prefix ends which is also proper suffix for the part
of the pattern up to the current state. Based on this lps state, we can now find out which
state we need to go to based on the character from the input text. For this purpose, we add
non-present transitions of the lps state to the current state.

1 determinize(nfa)
2 [subPatStart, subPatEnd] = getNextSubpattern(nfa);
3 lps = subPatStart;
4 current = lps.next;
5 while (current != subPatEnd)
6 // handle all transitions except forwardTransition of lps
7 for (transition : lps.transitions)
8 if (transition.character == current.forwardTransition.character) continue;
9 current.transitions.insert(transition);

10 // handle forwardTransition of lps explicitly
11 if (lps.forwardTransition.character != current.forwardTransition.character)
12 current.transitions.insert(lps.forwardTransition);
13 // update lps and move to the next state
14 lps = determineNextLps(lps, current.forwardTransition.character);
15 current = current.next;

Listing 2.10: Algorithm to convert a Like-NFA into a Like-DFA

Determining corresponding LPS. When determinizing, we need to update the lps pointer
accordingly, every time we move to the next state. Moreover, we know that we are processing
sequentially by following the forward transitions, which means that all states preceding
a certain state have already been processed. In Listing 2.11, we present the algorithm for
updating the lps pointer. To do this, we need the lps pointer and the character of the forward
transition of the current state. Based on that character, we can determine the new state for the
lps pointer: Initially, we check the forward transition of the lps state if the character matches;
if it does, we can return the target of this forward transition as our new lps state. Otherwise,
we check the transitions of our current lps state and if it is present in there, we return the

19

2. Exact String Pattern Matching

associated state to which the transition leads. At this point, we have checked all transitions
with a character, but none of them coincided with our character. As we also have Σ transitions
which, unlike in the Like-NFA, consume only those characters that are not explicitly stored
in transitions, we also consider that one. By construction of our algorithm, we know that
our lps state has already been fully processed and that it contains a Σ transition. So, when
no transition with a matching character was found previously, we return the state which is
reached by the Σ transition.

1 determineNextLps(lps, character)
2 if (lps.forwardTransition.character == character) return lps.next;
3 // find returns either the associated pointer or NULL
4 iter = lps.transitions.find(character);
5 if (iter) return iter;
6 // get Σ transition
7 return lps.transitions.find(Σ);

Listing 2.11: Determine the next lps state

A step-by-step explanation for the determinization of the Like-NFA for the pattern %abaa%
is shown in Fig. B.1 in the Appendix. In Fig. 2.4, we present the result of determinizing the
Like-NFA from Fig. 2.3.

q0 q1 q2 q3 q4
a b a a

Σ Σa

Σ

b

Figure 2.4.: Like-DFA for pattern %abaa%. A Σ transition consumes all characters which are
not explicitly a character of any transition of the state.

Example. Let us discuss the transitions for state q3 in the resulting Like-DFA: Once state
q3 is reached and the next character from the text to be consumed is α, then we know that
before α the text has the sequence aba. If α is a, then we would go to state q4 via the forward
transition and accept the subpattern. If α is b, then we need to go back to state q2, as the
longest proper prefix which is also proper suffix for aba is a which ends in q1. As q1 has a
forward transition with the letter b to q2, q3 needs to go back to q2 if α = b holds. So in other
words, for the sequence abab, the second ab would qualify for the first two characters of the
pattern abaa and the search continues from state q2. Lastly, if α is any other character, then we
need to go back to the begin of the automaton, state q0. In this case, the lps still ends in state
q1, but as the Σ transition leads back to q0, we also need to go back to q0 from state q3 with
the Σ transition. So, if we have seen the sequence abaα with α ̸= a ∧ α ̸= b, we can directly tell
that the longest proper prefix which is also proper suffix is the empty string meaning that we
need to start the search from state q0 again.

With the requirements and the limitations of our Like-NFA and the determinization algo-
rithm explained above, we can build a Like-DFA without growing in size.

20

3. Code Generation for Exact String Pattern
Matching

Code generating database engines allow to think of a new approach of performing exact LIKE
pattern matching. The concept behind the code generating pattern matching approach is to
get a compact representation of the pattern and any necessary tables, such as transition tables
or tables from preprocessing functions. By doing this, we aim to eliminate any additional
overhead from recomputing or accessing information that is known at query compilation time.

This chapter discusses the process of generating code for the algorithms outlined in Chap-
ter 2 within the database system Umbra [NF20; KLN21]. Umbra is an evolution of the pure
main memory database system HyPer [KN11] towards an SSD-based system and translates
queries into low-level code [Neu11]. The current method for pattern matching in Umbra in-
volves storing the pattern in the data section of the generated program and calling a matching
function written in C++ handing over a pointer to the stored pattern and the input text. This
function then performs the matching in an interpreting way and returns whether the pattern
was found or not. In the following sections, we will discuss how to generate code to search
for a pattern surrounded by two % wildcards.

In Sect. 3.1, we give a short summary of the code generation framework in Umra and its
specifics. Sect. 3.2 covers the code generation for the different implementations of the KMP
algorithm, Sect. 3.3 explains the BM algorithm, and Sect. 3.4 the automaton approach. To
cover multiple subpatterns, Sect. 3.5 explains how a pattern composed of multiple subpatterns
is translated into one big block performing the pattern matching.

3.1. Code Generation Framework in Umbra

In [KLN21], Kersten et al. describe the steps for building a compiling query execution
engine, which is also implemented in the database system Umbra: first, they introduce a code
generation framework which simplifies core concepts like control flow instructions to reduce
complexity and generates code in one pass; second, they present a program representation
whose data structures are designed to generate and compile code rapidly; third, they propose
a new compiler backend that is designed for minimal compile time and has exceptional
performance compared to other methods such as the Volcano-style or bytecode interpretation.

For our implementations of the pattern matching algorithms, we mainly access the Tuples,
SQL Values, and Codegen API layer. Umbra generates code in static single assignment (SSA)
form; with that form, an additional compiler pass can be saved when compiling the query.

In Umbra, the generated code is organized in basic blocks; during code generation, there is
always one current block to which new instructions append. While writing the pattern specific
code, we handle the basic blocks manually, to which the instruction needs to be appended .

Moreover, as the code is in SSA form, we need to use the PHI nodes as a substitute for

21

3. Code Generation for Exact String Pattern Matching

multiple variable assignment. A PHI node is an instruction at the start of a basic block with
multiple arguments. Based on which basic block was executed before the current block with
the PHI node, it chooses one of its associated values from the PHI node arguments.

In the following sections, we present the conceptual control flow of the algorithms without
going into the specifics of code generation in Umbra in detail.

3.2. Knuth-Morris-Pratt Algorithm

In this section, we will examine the algorithms discussed in Sect. 2.2 and explain how to
include optimizations to improve performance. The first optimization, the early return, is
already included in every implementation of the algorithm.

3.2.1. Original KMP

As presented in Listing 2.2, there are multiple accesses to the pattern and, in case of a shift,
also to the lps table of the pattern. When translating the algorithm into code, we first analyze
which parts of the algorithm can be inlined: the pattern itself, the lps table of the pattern,
and the length of the pattern. The structure of the generated code can mostly be transferred
from the original algorithm by only adding mechanisms to deal with the SSA format of the
code generation in Umbra. In Fig. 3.1, we present the overall structure of the generated code
for the Original KMP algorithm; the darkgreen comments represent the places at which the
pattern, lps table, and pattern length need to be inlined, the green arrows are taken in case
the condition evaluates to true, the red arrows otherwise. During the following explanation
of the control flow, we sometimes refer to the original code from Listing 2.2 by putting the
corresponding line in brackets.

The entry point for the search is the block with the label whileLoopHeader. This block
represents the loop over the input text length and checks whether the remaining length of the
input text is still sufficient (similar to line 5), otherwise directly returns false. As in further
steps the character at the position pPos is required, we look up the current character in the
determinePatternChar block. Next, we check the condition of the inner loop in the original
algorithm (see line 6): If the condition holds, we need to update pPos. For this update, we
enter the determineLPSTableEntry block to look up the lps entry for the given position in
the pattern. When inlining the lps table here, we can leave out the entry at index 0, as, due
to the check before, pPos cannot be 0 at this point. After reading and setting the new pPos,
we go back to determine the character at the current position in the pattern and check and
optionally execute the inner loop again. If the condition of the inner loop fails, we check if
the current pattern character and text character match (see line 8). This can be done as we
have looked up the character from the pattern in the determinePatternChar block before.
Following a successful character check, we check if the pattern end is already reached and,
if yes, return true (see line 9), otherwise increment the position in the pattern. After all, we
branch to the block whileLoopIteration to increment the position in the text and then go
back to the whileLoopHeader block to continue with the search.

By using this approach to generate code for the Original KMP algorithm, we see that no
additional access to the pattern or the lps table of the pattern is necessary as any relevant
information is put into the generated code.

22

3.2. Knuth-Morris-Pratt Algorithm

whileLoopHeader:
check tPos + pattern.size() - pPos ≤ text.size()

return false

determinePatternChar:
cPat = match pPos { /* inline pattern here */ }
check pPos && cPat ̸= text[tPos]

determineLPSTableEntry:
shift = match pPos { /* inline lps table here */ }
pPos = shift

check cPat = text[tPos]

check pPos = /* inline pattern length here */ - 1

return true

pPos++

whileLoopIteration:
tPos++

Figure 3.1.: General control flow of the generated code for the Original KMP algorithm.
A green arrow is taken if the previous check evaluates to true, the red arrow
otherwise.

3.2.2. KMP with One Loop

As in the Original KMP algorithm, the modified implementation also requires the pattern and
the corresponding lps table to be inlined into the generated code. In this approach, we follow
the structure of the code from Listing 2.3. However, we change the control flow in such a way
that we do not have to iterate multiple times to match the pattern against the input text, but
write out the comparisons between pattern and input text sequentially.

To start, we enter the block whileLoopHeader to check if there are still characters from the
input text to read. In that case, we need the condition of the early return, as we have to make
sure that the input text is not exceeded by the pattern; otherwise, we would access parts of the
memory not belonging to the input text. If there are not enough characters left, the algorithm
returns false; otherwise, the control flow starts to perform the comparison of the characters
starting at the current position in the pattern. To do that, the generated code lists the possible
indexes of the pattern covering the interval [0, . . . , len(pattern)[and checks if the current

23

3. Code Generation for Exact String Pattern Matching

position matches this index. By design of the algorithm, we know that the current position in
the pattern and one of the listed indexes needs to match. Once this index is found, the control
flow goes to the corresponding check of the pattern character at this index which can also be
inlined into the generated code and verifies if the character of the pattern and the input text
coincide. If the characters are the same, the control flow moves on to the next character in
both pattern and text and checks these again; once all characters have been checked, i.e. no
mismatching characters could be found, the function can return that the pattern was found
in the text. If two characters are not the same, the matching process stops and the control
flow goes to the performShift block. In this block, we determine based on the position in the
pattern which shift needs to be performed by looking up in the inlined lps table. This shift is
then used to set the position in both pattern and text for the next search and the control flow

whileLoopHeader:
check tPos + pattern.size() - pPos ≤ text.size()

return false

check pPos = 0

check text[tPos + 0] = /* inline pattern[0] */ check pPos = 1

pPos = 1
check text[tPos + 1] = /* inline pattern[1] */

check pPos = n

pPos = n
check text[tPos + n] = /* inline pattern[n] */

unreachable

return true

performShift:
shift = match pPos { /* inline lps table here */ }
isNegative = shift < -1
pPos = isNegative ? 0 : shift
tPos = isNegative ? tPos + 1 : tPos

inline pat-
tern with
length n + 1
to resolve
pPos and
perform
comparisons
from that
position on-
wards

Figure 3.2.: General control flow of the generated code for the KMP algorithm with one loop.
A green arrow is taken if the previous check evaluates to true, the red arrow
otherwise.

24

3.2. Knuth-Morris-Pratt Algorithm

goes to the whileLoopHeader block to restart the search.

3.2.3. Adding Optimizations to Code Generation Process

As discussed in Sect. 2.2.4, we have three different optimizations for the KMP algorithms. The
first optimization, the early return, is already applied to all implementations.

Another optimization, the compression of the lps table, primarily affects the preprocessing
function. The Original KMP algorithm needs to be modified slightly, as now also negative
shifts can be reached at indexes other than 0; however, the KMP algorithm with one loop does
not need any changes, as it can already handle negative shifts. A negative shift indicates that
the pattern can be reset to its start and the search can begin at the character to the right of the
current character in the input text.

The third optimization is blockwise processing. The idea is to find a given character in a
larger block using bitwise operations, instead of iterating through the characters in the block.
This optimization can be applied when searching for the first character of the pattern: As we
assume that the alphabet is reasonably big and the occurrence ratio of the character is low, it
is likely that the first character will not match. In this case, the KMP algorithm would only
shift by 1, resulting in searching for the character one by one through the text. To avoid this,
blockwise processing can be applied to search for the first character of the pattern when the
algorithm would just iterate one by one. Once found, the matching for the rest of the pattern
can start from the found position onwards.

The original control flow from Fig. 3.2 is just extended by the block blockwiseProcessing,
which performs the blockwise search for the first character of the pattern. Fig. 3.3 visualizes
this new control flow, leaving out the part of inlining the pattern which is the same as in the
control flow of Fig. 3.2.

The basic idea behind blockwise processing is to shift to a position in the text where the
first character coincides with its aligned text character. This allows the matching to continue
from the second character. The process then proceeds as discussed in the unmodified version.
The only exception is when a shift occurs due to two mismatching characters: In this case, a
negative shift would indicate that the pattern should be moved by one to restart the search
from the beginning. Instead, blockwise processing is applied again to search for the next
occurrence of the first character of the pattern in the text and start the matching process from
this position. If the shift is not negative, the positions are updated and the algorithm proceeds
in the whileLoopHeader block with performing a normal matching phase.

In the blockwise processing, we insert a check if it is safe to read the next 8 bytes from the
input text. If it is, we read these bytes and perform the blockwise processing on them; if not,
we skip the phase and leave the step-by-step processing to the original algorithm.

25

3. Code Generation for Exact String Pattern Matching

blockwiseProcessing:
/* put blockwise processing for first character in pattern here */
pPos = 1
check matchFound

whileLoopHeader:
check tPos + pattern.size() - pPos ≤ text.size()

return false

...

performShift:
shift = match pPos { /* inline lps table here */ }
isNegative = shift < 0
pPos = isNegative ? 0 : shift
tPos = isNegative ? tPos + 1 : tPos
check isNegative

inline pat-
tern similar
to Fig. 3.2

Figure 3.3.: Modified control flow of the generated code for the KMP algorithm with one loop
to include optimizations. A green arrow is taken if the previous check evaluates
to true, the red arrow otherwise.

26

3.3. Boyer-Moore Algorithm

3.3. Boyer-Moore Algorithm

This section covers the code generation for the three versions of the Boyer-Moore algorithm
discussed in Sect. 2.3.

3.3.1. Original BM

Similar to the KMP algorithm, the original version of the Boyer-Moore algorithm has accesses
to the pattern and the precomputated tables, which are required to determine the correct shift
in case of a mismatch. To generate the code for this pattern matching algorithm, we again
keep its structure, but write out the comparisons of the pattern characters with the input
characters from right to left sequentially into the code. Fig. 3.4 shows the control flow for the
Original BM algorithm.

The block whileLoopHeader represents the loop over the input text, checking if the input text

whileLoopHeader:
check tPos < text.size()

return false

pPos = n
check text[tPos] = /* inline pattern[n] */

tPos--
pPos = 1
check text[tPos] = /* inline pattern[1] */

tPos--
pPos = 0
check text[tPos] = /* inline pattern[0] */

return true

performShift:
badShift = match text[tPos] { /* inline δ1 table */ }
goodShift = match pPos { /* inline δ2 table */ }
tPos = tPos + max(badShift, goodShift)

inline pat-
tern with
length n + 1
from right to
left and keep
track of the
position in
the pattern

Figure 3.4.: General control flow of the generated code for the Original BM. A green arrow is
taken if the previous check evaluates to true, the red arrow otherwise.

27

3. Code Generation for Exact String Pattern Matching

is exhausted. In this case, we can return false; otherwise, we start comparing the pattern from
right to left. These comparisons are listed in the generated code by inlining the corresponding
character at this position. After each successful character check, we go to the block for the
next character. In order to read the correct character in the text, we also need to decrement the
position in the text in this block. If all characters match, the pattern was found in the text and
we can return successfully. In case of mismatching characters, we need to determine the shift
for that position. For this, we have the block performShift in which the tables δ1 and δ2 are
inlined. Based on those tables and the information about the position at which the mismatch
occurred, the relevant shift can be found. Finally, we add the maximum of the two shifts to
the position in the text and go back to the whileLoopHeader to continue the search.

When inlining the table δ1, we do not inline the whole table, but only the entries whose value
differs from the pattern length and use that value as a default value for all other characters.
Looking up the value in the table can lead to two situations: if the character is in the table,
then the corresponding value is used; if not, the default value, the pattern length, is used.

3.3.2. Fast BM

As presented in Fig. 3.5, the control flow of the Original BM algorithm can easily be extended
to the fast version presented in [BM77].

The key idea of this algorithm is the table δ0. This table can also be inlined completely into
code by only storing the values for the characters that appear in the pattern and putting the
pattern length as a default value for all characters not in the pattern. By reading the value
from that table, it is used to detect if the current text character matches the last character of
the pattern. If not, the pattern is automatically shifted to the right by adding the value of the
δ0 table and the search can continue; in case of a match, the comparison itself is started from
the second last character of the pattern towards the left. For this, we only need to inline the
pattern starting from the second last character to the begin of the pattern; the last character
of the pattern was already matched indirectly by adding the value from δ0. However, before
starting the comparison from the second last character, we need to recalculate the position in
the text to be correctly aligned with the second last character in the pattern. To do that, we
only subtract the value large, which was added to the position when getting the shift from δ0.
With that, we get the position in the text with which the last character of the pattern is aligned.
The comparison of the pattern then starts at the second last character of the pattern, as the
last character was already matched implicitly. Once all characters were compared successfully,
the algorithm can return true, otherwise, the performShift block is entered in which we
determine the shift based on δ1 and δ2, similar to the original algorithm. After applying this
shift, we go back to the whileLoopHeader to continue with the search.

3.3.3. Blockwise BM

In Sect. 2.3.4, we present an adaption of the Fast BM algorithm to replace the byte-by-
byte search for the last character of the pattern with blockwise processing. With that idea,
we want to discuss now how to modify the Fast BM algorithm to include the blockwise
processing: When generating code for a pattern, we introduce a blockwiseProcessing block
which handles the functionality to perform blockwise search for a character, as discussed
in Sect. 2.2.4.3. In this basic block, we process a complete block as long as possible before

28

3.3. Boyer-Moore Algorithm

whileLoopHeader:
check tPos < text.size()

return false

δ0-shift = match text[tPos] { /* inline δ0 table */ }
tPos = tPos + δ0-shift
check tPos < large

tPos = tPos - large - 1
pPos = n-1
check text[tPos] = /* inline pattern[n] */

...

performShift:
badShift = match text[tPos] { /* inline δ1 table */ }
goodShift = match pPos { /* inline δ2 table */ }
tPos = tPos + max(badShift, goodShift)

inline
pattern[0, . . . , n[of
pattern with length
n + 1 from right to
left and keep track
of the position in the
pattern

Figure 3.5.: General control flow of the generated code for the Fast BM. A green arrow is
taken if the previous check evaluates to true, the red arrow otherwise.

switching to byte-by-byte processing until the input text is exhausted. By applying these
restrictions, we make sure that once the blockwiseProcessing block is left, the pattern is
either aligned with a character matching the last one or the input text is exceeded and the
search can terminate. Afterwards, we can directly start the remaining comparison as presented
in Fig. 3.5 for the Fast BM implementation. In case of a shift, we get the shift values from the
δ1 and δ2 table, take the maximum, and then go to the blockwiseProcessing block to search
for the last character from the new position in the input text on.

By using this modified approach, we can get rid of the inlining of the δ0 table, as well as the
checks whether the position in the text is greater than or equal to the value large.

29

3. Code Generation for Exact String Pattern Matching

3.4. Automaton Approach

In Sect. 2.4, we have discussed our approach to generate an automaton from our pattern and
to determinize it to get a Like-DFA. Moreover, we have already presented how to handle the
prefix and the suffix of the pattern without the requirement to build a full automaton for those
parts. In this section, we present two ideas how to translate the Like-DFA into generated code,
the direct approach in Sect. 3.4.1 and the approach to apply the blockwise search functionality
in Sect. 3.4.2.

3.4.1. Direct Translation

Our direct approach is to translate the automaton directly into code. This means that we
iterate through the states of our automaton and generate code for each one of them. Inside
every generated code block, we first check if the text is exhausted or not. After that, we
generate code to get the next character of the input text. For this character, it is then checked if
it fits any transition going out from the state. For this, we generate a check for each transition
of the current state. However, due to the design of our transitions, we first only write out
the transitions including the forward transition which do consume a specific character and
place the Σ transition as the default handler at the end. When the character was found or the
default transition is taken, we increment the position in the text and jump to the code that
belongs to the state of this transition.

In Listing 3.1, we present the generated code for the automaton in Fig. 2.4 for the pattern
%abaa%.

1 q0: if (tPos >= text.size()) { return false; }
2 c = text[tPos];
3 if (c == ’a’) { tPos++; goto q1; }
4 else { tPos += Utf8::length(c); goto q0; }
5 q1: if (tPos >= text.size()) { return false; }
6 c = text[tPos];
7 if (c == ’a’) { tPos++; goto q1; }
8 else if (c == ’b’) { tPos++; goto q2; }
9 else { tPos += Utf8::length(c); goto q0; }

10 q2: if (tPos >= text.size()) { return false; }
11 c = text[tPos];
12 if (c == ’a’) { tPos++; goto q3; }
13 else { tPos += Utf8::length(c); goto q0; }
14 q3: if (tPos >= text.size()) { return false; }
15 c = text[tPos];
16 if (c == ’a’) { tPos++; goto q4; }
17 else if (c == ’b’) { tPos++; goto q2; }
18 else { tPos += Utf8::length(c); goto q0; }
19 q4: return true;

Listing 3.1: Generated code for automaton in Fig. 2.4 for the pattern %abaa%

When translating the Σ transition, we need to consider that our input text might contain
UTF8-encoded characters, so when taking this transition, we need to skip the number of bytes
belonging to that character. This is abstracted by the function call Utf8::length(...). When
generating the code itself, we replace these function calls with generated code to determine

30

3.4. Automaton Approach

the number of characters to be skipped: for ASCII characters, we just return the length 1; for
Non-ASCII characters, we return the number of leading 1’s by using an assembly instruction
which performs that counting.

3.4.2. Blockwise Translation

Considering the build algorithm and construction of the Like-NFA and Like-DFA, we see
that for each start state of a subpattern, i.e. a state with a Σ transition to itself, we scan
through the input text until reaching a character that matches the character of the forward
transition. As we have already discussed in Sect. 2.2.4.3, this byte-by-byte search can be
replaced with the blockwise functionality to directly search for a specific character in a block.
While generating code for our Like-DFA, we now only have to replace the part when handling
the start state of a subpattern; the process for the remaining states of the subpattern can be
kept the same. For the start state of a subpattern, we generate code which searches for the
character of the forward transition in a blockwise manner as long as possible and only changes
to byte-by-byte processing when the remaining text length is too short. Once the character
of the forward transition was found, the control flow goes to the second block, where the
processing continues as in the direct approach.

Listing 3.2 shows the generated code for the automaton from Fig. 2.4 with the blockwise
processing at the section start. This extension is highlighted in the code with a gray background.
The function blockwiseSearch(...) takes the input text, the position in the text where the
search should start, and the searched character. Moreover, it also encapsulates the functionality
to process the input text blockwise as long as possible and to change to the byte-by-byte
search, once the length is not sufficient anymore; it also stops if the input is exhausted. It
returns the index of the searched character in the input text.

1 q0: tPos = blockwiseSearch(text, tPos, ’a’) ;
2 if (tPos >= text.size()) { return false; }
3 tPos++; goto q1;
4 q1: if (tPos >= text.size()) { return false; }
5 c = text[tPos];
6 if (c == ’a’) { tPos++; goto q1; }
7 else if (c == ’b’) { tPos++; goto q2; }
8 else { tPos += Utf8::length(c); goto q0; }
9 q2: if (tPos >= text.size()) { return false; }

10 c = text[tPos];
11 if (c == ’a’) { tPos++; goto q3; }
12 else { tPos += Utf8::length(c); goto q0; }
13 q3: if (tPos >= text.size()) { return false; }
14 c = text[tPos];
15 if (c == ’a’) { tPos++; goto q4; }
16 else if (c == ’b’) { tPos++; goto q2; }
17 else { tPos += Utf8::length(c); goto q0; }
18 q4: return true;

Listing 3.2: Generated blockwise code for automaton in Fig. 2.4 for the pattern %abaa%

31

3. Code Generation for Exact String Pattern Matching

3.5. Concatenating Multiple Subpatterns

Until now, we have only discussed the concept of generating code for one pattern surrounded
by two % wildcard. In this section, we want to explain how to conceptually generate code for
the pattern α%β%γ%δ with α, β, γ, and δ representing any sequence of characters without a _
wildcard.

In Fig. 3.6, we show a visualization how the generated code per subpattern, grouped
into logical blocks, is connected. For the pattern above, we start with writing out a linear
comparison for the subpattern α from left to right, as we directly can compare these characters
with the same number of the first ones from the input text. Then, we continue with generating
code for the subpatterns β and γ as presented in the sections before. However, we do not
generate a return from each of the matching phases like in the visualized control flows.
Instead, once we accept the subpattern β, we go to the entry block for matching γ and pass
on the index at which the previous pattern ended. With that, we can start the search for γ.
Once only the end δ is left, we write out a direct comparison for this sequence from right to
left with the end of the input text. If all character match, we only need to check the indexes
at which γ ends and δ starts to avoid that the patterns overlap. Once all blocks were passed
successfully, we can accept the input text; otherwise, we need to reject it.

With this approach, we can deal with any kind of pattern, regardless of which parts of the
pattern are present.

direct forward comparison for α

generated code of the algorithm to match β

generated code of the algorithm to match γ

direct reverse comparison for δ
check that indexes are not overlapping

return true return false

Figure 3.6.: Conceptual control flow of the generated code for the pattern α%β%γ%δ. Each
node encapsulates the whole functionality noted down in it. A green arrow is
taken if the previous check or algorithm evaluates to true, the red arrow otherwise.

32

4. Evaluation for Exact String Pattern Matching

In this chapter, we present the results of the experiments evaluating the performance of code
generation for pattern matching. Our findings indicate that the use of code generation leads
to a significant increase in throughput compared to an interpreting approach. In particular,
we observed that for certain queries, the throughput of code generation was almost twice that
of the interpreting method.

4.1. Experimental Setup

The section outlines the environment and settings of our experiments. In Sect. 4.1.1, we list the
hardware information of the server which we used to run the experiments. Sect. 4.1.2 gives
an overview over the used datasets and queries; Sect. 4.1.3 explains the settings of Umbra to
execute the queries.

4.1.1. Hardware Specification

For the experiments, a single core (one NUMA region) of a dual-socket machine running two
Intel Xeon E5-2680 processors at 2.40 GHz has been used. The machine has in total 256 GB
of DDR4-RAM running at 2400 MHz. The OS is a 64-bit Ubuntu 22.04.1 LTS with a Linux
5.15.0-56-generic kernel.

Umbra is implemented in C++ and compiled with g++-12.1.0. The Makefile is written and
maintained manually and compiles Umbra with optimization level O3. Optionally, one can
also use CMake (at least cmake-3.21 required).

4.1.2. Data and Queries

To evaluate the performance of code generation for pattern matching, we conducted experi-
ments on two datasets: the TPC-H benchmark dataset and the ClickBench dataset. The next
two sections provide an overview of the datasets and present the queries that were used for
our measurements.

4.1.2.1. TPC-H Data

To measure the single-threaded performance of our implementation, we use the TPC-H
schema1 and its data with the scale factor 1. In Fig. 4.1, we show the distribution of all
characters which occur in the input texts in the TPC-H scheme. Based on the TPC-H scheme
and its example query 9, we choose to use the following queries as workloads for our
measurements:

1https://www.tpc.org/tpch/

33

https://www.tpc.org/tpch/

4. Evaluation for Exact String Pattern Matching

short: The pattern length is less than 25% of the average input text length:
select count(*) from part where p_name LIKE ’%spring%’;
10825 tuples fulfill the condition.

medium: The pattern length is between 25% and 50% of the average input text length:
select count(*) from part where p_name LIKE ’%medium spring%’;
96 tuples fulfill the condition.

long: The pattern length is more than 50% of the average input text length:
select count(*) from part where p_name LIKE ’%midnight medium spring%’;
2 tuples fulfill the condition.

multiple: The pattern is composed of multiple subpatterns:
select count(*) from part where p_name LIKE ’%midnight%medium%spring%’;
4 tuples fulfill the condition.

As the names of the queries suggest, we intend to cover four different types of patterns which
might occur frequently in real-world queries. The table part of the TPC-H scheme has 200k
tuples, the length of text input of the attribute p_name is on average 32.75 characters.

4.1.2.2. ClickBench

In order to check our implementations on a more realistic dataset, we decided to use Click-
Bench2, a benchmark which represents typical workload in areas such as clickstream and
traffic analysis, web analytics, machine-generated data, structured logs, and events data. It
includes typical queries used in ad-hoc analytics and real-time dashboards.

The data used in the benchmark is collected from a real-world web analytics platform,
and while it is anonymized, it retains the essential distributions of the data. The queries are
designed to reflect realistic workloads.

For our experiments, we used queries 20, 21, 22, and 23 from the ClickBench benchmark.
The table used for the benchmark contains 99,997,497 records, and the average length of the
input text is 89 characters. The dataset contains both ASCII and Non-ASCII characters, the
distribution of the occurring bytes in the input text can be seen in the Tables C.1 and C.2 in
the Appendix

4.1.3. Query Settings

For our implementation, we extended the functionality in Umbra to match LIKE expressions,
allowing for dynamic configuration changes at runtime. To measure performance, we utilized
the built-in measurement functionality provided by Umbra when running a query. The TPC-H
schema queries were executed using a single thread and the process of compilation and
execution was repeated 1000 times. For the ClickBench queries, we ran them using one thread,
eight threads, and 20 threads, and repeated each query 20 times. Additionally, we compiled
the queries using both the JITBackend, which employs LLVM for code generation, and the
DDCGBackend, which generates machine code directly.

2https://benchmark.clickhouse.com

34

https://benchmark.clickhouse.com

4.2. Results

a b c d e f g h i j k l m n o p q r s t u v w y z
0

5

10

R
at

io
[%

]

Figure 4.1.: Distribution of the ASCII characters in the input texts of the TPC-H scheme

4.2. Results

In this section, we present the results of our experiments. For each algorithm that has both an
interpreting and code generating version, we present the results side-by-side, with the left bar
(hatched) representing the interpreting version, which involves calling the corresponding C++
function for the matching process, and the right bar showing the throughput for the query
when generating code for the matching process.

4.2.1. Knuth-Morris-Pratt Algorithm

As already discussed in Sect. 2.2 and 3.2, we have presented two different versions to imple-
ment the KMP algorithm and three additional optimization ideas. The idea of the early return
is directly applied to all algorithms, so, they use the revisited condition when looping over
the input text.

4.2.1.1. Regular LPS Table

Fig. 4.2 presents the throughputs, we could achieve on the dataset with the queries discussed
above. On the left side of the dashed vertical line of each graph, there is the Original KMP
algorithm; on the right side, the KMP algorithm with One Loop and its blockwise modification
are shown.

Short pattern. When using the JITBackend, we see that the code generating version of each
algorithm has a higher performance than the interpreting implementation.

Looking at the KMP with One Loop (OL-KMP) and its variants, we see the benefit of the
code generating approach over the interpreting one. Although the interpreting approach is
slower than the O-KMP, the code generating version benefits from the easy approach without
the need to handle two interleaved loops as it is necessary in the O-KMP. The code generating
OL-KMP also benefits from writing out the pattern completely into the code, unlike the
O-KMP which includes the pattern by writing it in a PHI node.

We also notice that the algorithm using the blockwise processing optimization (BOL-KMP)
has a much higher throughput than the ones without. This optimization allows us to reduce
the number of cycles needed by processing eight bytes at a time instead of iterating through
the input text one byte at a time. Additionally, we experience fewer cache accesses to the

35

4. Evaluation for Exact String Pattern Matching

0

20 M

40 M

J
IT

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

Short pattern Medium pattern Long patterns Multiple patterns

0

10 M

20 M

D
D

C
G

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

Original KMP
unoptimized

KMP with One Loop
unoptimized blockwise

Figure 4.2.: Throughput for the different workloads of the KMP algorithms. For each algo-
rithm, the left (hatched) bar presents the throughput of the interpreting version,
the right one is the code generating version. At the left of the dashed vertical line,
the Original KMP (Sect. 2.2.2 and 3.2.1) is shown with its optimization; on the
right, the KMP with One Loop (Sect. 2.2.3 and 3.2.2) and its optimized algorithms
are shown. (Higher is better.)

input text compared to the unoptimized versions. The blockwise optimization improves the
performance of both the interpreting and code generating versions.

When using the DDCGBackend, we observed similar performance in terms of throughput
for both the interpreting and code generating versions. However, for the O-KMP algorithm,
the code generating version had a lower throughput than the interpreted version. Like the
other backend, this is due to the lack of instruction reordering when compiling the generated
code as it happens for the interpreting code when Umbra is compiled. Additionally, the
backend that produces the generated code and converts it to machine code handles PHI nodes,
which are necessary for loops in SSA form, by storing values in memory, resulting in increased
memory accesses. In the O-KMP implementation, there is an outer loop and an inner loop,
which requires more PHI nodes and results in more memory loads and stores.

Similar to the JITBackend, the blockwise processing results in an increase in throughput for
both the interpreting and code generating algorithms. The throughput of the generated code
is again higher than its corresponding interpreting version.

36

4.2. Results

Medium pattern. For the medium pattern, we observe that the throughput of the code
generating implementations begins to improve compared to the short pattern. The throughput
of the interpreting approaches only vary slightly in comparison.

In the JITBackend, the performance of the BOL-KMP improves significantly when compared
to the other algorithm. However, it is important to note that the blockwise search used the
character ’m’ which has a lower ratio than the ’s’ searched for in the short pattern workload.
Additionally, we can see a performance improvement for the 0-KMP and OL-KMP algorithms,
although it is less significant.

In the DDCGBackend, we also see that the throughput of the code generating version of
the O-KMP is now higher than its interpreting version. This is because the medium pattern is
longer and thus, the early return can be applied sooner than for the short pattern. This allows
for more input texts to be rejected, resulting in an overall performance improvement.

Long pattern. When it comes to the long pattern, the benefit of code generation over
interpreting algorithms is clear for both backends. The main advantage of code generating
algorithms is that the lps table is calculated only once at code generation time, and is then
inlined into the code.

In contrast, interpreting algorithms require the lps table to be generated every time a tuple
is processed, which reduces the throughput of the interpreting algorithms as the pattern
length increases. However, the additional preprocessing time for long patterns is partially
offset by the early return optimization: longer patterns can be rejected faster if there is no
match, so more tuples can be processed in the same time interval.

The performance gained by the early return optimization can be seen when comparing the
throughput of the code generating versions of the short and long pattern: the long pattern
leads to more input texts to be rejected due to the early return, resulting in a significantly
higher throughput for the long pattern than the short one. In the code generating version,
both the pattern and the lps table are completely inlined into the code, so we do not have
any additional memory accesses to the pattern or the lps table. The only issue could be the
limit of the code generation framework and the resulting size of the generated program if the
pattern is too long.

The blockwise optimization, applied in the BOL-KMP, again results in a significant perfor-
mance gain compared to the unoptimized versions. For the JITBackend and DDCGBackend,
we almost quadruple and double the throughput, respectively, compared to the interpreting
versions.

Multiple patterns. For the query with the multiple pattern workload, we achieve a similar
throughput as for the short pattern. Our pattern is composed of three rather small subpatterns.

When processing such patterns, we process one subpattern at a time. Once one subpattern
is found, we start searching for the next one starting after the occurrence of the first pattern.

In the interpreting versions, we need to preprocess each subpattern before starting the
search in the input text, which results in a loss of performance due to the preprocessing.

In the code generating versions, the subpatterns are preprocessed at code generation
time and the lps tables are written into the code. The achieved throughput is between the
throughputs of the short and medium patterns. When searching for multiple patterns, it
depends on the individual subpatterns: In our case, the first subpattern is in the category of

37

4. Evaluation for Exact String Pattern Matching

a medium pattern. Due to that, the search for this first subpattern already leads to several
input texts to be rejected as it cannot be found. However, for those texts that contain the
first subpattern, the search for the next pattern takes some additional processing time; the
same holds for the last subpattern. With this, we achieve a throughput between the small and
medium queries.

4.2.1.2. Compressed LPS Table

One of our optimizations for the Knuth-Morris-Pratt algorithm is the use of the compressed
lps table. This optimization aims to reduce the number of jumps in the pattern when a
mismatch occurs between the character of the pattern and the text, and is particularly useful
when searching for patterns with several repetitive parts.

However, during our evaluation, we found that this optimization did not result in a noticable
increase in performance compared to the unoptimized version for real-world patterns. In
some cases, such as with the O-KMP algorithm, it even led to a decrease in throughput. This
is because the algorithm required modification in order to work correctly with the new table.
This introduced additional branches and checks, which ultimately slowed down performance
by causing mispredictions during execution. Although also the interpreting algorithm needs
to be adapted, the compiler and optimizer rearrange the instructions to get more efficient
code when Umbra is built.

For completeness, we present the results for the compressed OL-KMP in Fig. 4.3. The graph
shows that, for the OL-KMP, this optimization did not lead to a higher throughput.

0

15 M

30 M

J
IT

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

Short pattern Medium pattern Long patterns Multiple patterns

0

8 M

16 M

D
D

C
G

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

unoptimized compressed

Figure 4.3.: Throughput for the different workloads of the unoptimized OL-KMP and of
the compressed OL-KMP. The left (hatched) bar presents the throughput of the
interpreting version, the right one is the code generating version. (Higher is
better.)

38

4.2. Results

4.2.2. Boyer-Moore Algorithm

In Sect. 2.3 and 3.3, we have demonstrated three different implementations for the Boyer-Moore
algorithm. The first two are the proposed ones by Boyer and Moore, the Original BM (O-BM)
and the Fast BM (F-BM). The third version is our proposed modification, the Blockwise BM
(B-BM), that includes blockwise processing to speed up the F-BM implementation.

Fig. 4.4 illustrates the performance of the algorithms for the previously discussed queries.
Similar to the KMP algorithms, the interpreting versions of the Boyer-Moore algorithm require
preprocessing before the search can start for each tuple. The BM preprocessing generates two
tables for the O-BM and B-BM and theoretically three tables for the F-BM. The preprocessing is
explained in Sect. 2.3.1. Overall, we can see that the code generation version of each algorithm
has a higher throughput than its corresponding interpreting implementation.

Short pattern. The performance of the interpreting versions of all implementations is quite
similar, with the F-BM and B-BM only slightly faster than the O-BM. Based on performance

0

20 M

40 M

J
IT

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

Short pattern Medium pattern Long pattern Multiple patterns

0

15 M

30 M

D
D

C
G

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

original fast blockwise

Figure 4.4.: Throughput for the different workloads of the BM algorithms. For each algorithm,
the left (hatched) bar presents the throughput of the interpreting version, the
right one is the code generating version. We present the Original BM (Sect. 2.3.2
and 3.3.1), the Fast BM (Sect. 2.3.3 and 3.3.2), and the Blockwise BM (Sect. 2.3.4
and 3.3.3). (Higher is better.)

39

4. Evaluation for Exact String Pattern Matching

measurements throughout the implementation phase of the F-BM, we decide not to explicitly
generate the table δ0, but instead to perform a check in order to add the value large correctly.
Our suggested B-BM has similar performance to the F-BM in its interpreting version. By
profiling the individual implementations and analysing their performance, we found that
repeatedly preprocessing the pattern takes a significant amount of the computation time, so
the F-BM and B-BM implementations cannot benefit from the applied optimization methods.

However, the code generating versions using the JITBackend clearly benefit from prepro-
cessing the pattern only once and writing out everything to code. As shown in the graph,
we nearly double the interpreting throughputs for the code generating O-BM and F-BM. The
throughput for the F-BM is also a slightly higher than for the O-BM, indicating the advantage
of the Fast BM implementation. Additionally, the B-BM benefits greatly from the blockwise
optimization, with its throughput about four times that of the interpreting version.

For the DDCGBackend, we also observe the advantage of generating code for the pattern
matching process. With this backend, the performance improvement of the F-BM over the
O-BM is more obvious. However, due to the internal handling in the backend, the throughput
for the O-BM and B-BM is lower than with the JITBackend; only for the F-BM, the throughput
can keep up with the corresponding equivalent of the JITBackend.

Medium pattern. The throughputs for the interpreting algorithms with the medium pattern
workload are similar to the short pattern but lower. This is because, even though a longer
pattern allows for faster search termination when the input text is exceeded, the time for
repeating preprocessing accumulates and reduces the throughput.

When it comes to the code generating versions, we see that for both the JITBackend and
the DDCGBackend, the throughput of each of the algorithms starts to increase compared to
the short pattern. This is because preprocessing once and writing everything to code as well
as the higher number of characters in the medium pattern allows for processing more input
texts in the same time interval.

Long pattern. As the pattern length increases from short over medium to long, the perfor-
mance of interpreting versions also decreases due to more costly preprocessing. This extra
time spent on preprocessing cannot be compensated by the advantage of long patterns that
allow for faster search termination when the input text is exceeded.

Similar to the observations before, the throughput of the code generating implementations
even increase further and are at least five times the throughput of the corresponding inter-
preting versions. However, as the pattern length increases, the difference between O-BM and
F-BM becomes less pronounced, with the B-BM still being the dominant algorithm among the
three.

Multiple patterns. For our pattern composed of multiple subpatterns, we process each
subpattern individually. The first subpattern is a medium one, the remaining two are short
ones. The throughput of each interpreting version for the composed pattern falls between the
one for the short and medium patterns.

In the JITBackend, the throughput increases from the O-BM to the F-BM and then to the
B-BM. This suggests that incorporating the blockwise optimization improves performance
when searching for a pattern composed of multiple subpatterns. Although the throughputs

40

4.2. Results

for the O-BM and F-BM are between the throughputs of the short and medium patterns, the
throughput of the B-BM drops below the medium one. Analysis of the performance of the
generated code reveals that the backend resolves some PHI nodes by writing to and reading
from memory. Thus, adding the blockwise optimization to the algorithm does not allow the
backend to perform an optimal register assignment as before causing a little performance
drop.

Similar issues arise with the DDCGBackend. For the O-BM and the F-BM, the throughput
remains comparable to that of the medium pattern. However, the B-BM is outperformed by
the F-BM. This is due to the added effort required by blockwise processing in addition to the
memory access used to resolve PHI nodes, which results in an overall drop in performance
compared to the unoptimized versions.

4.2.3. Automaton Approach

In Sect. 2.4 and 3.4, we detailed the process of converting a given pattern into a Like-NFA,
determinizing it to create a Like-DFA, and utilizing it for code generation.

The results of the generated code can be seen in Fig. 4.5, which illustrates the performance
of the queries using the automaton for the string pattern matching process. Overall, the
Blockwise Translation yields a higher throughput than the Direct Translation method.

However, there is a significant difference between the two backends, as the throughput of
the DDCGBackend is mostly around half of that of the JITBackend. This is primarily due to
the handling of PHI nodes: When generating the code for the automaton, during execution,
each state needs to determine the current position in the text; to do that in SSA form, we
need to put a PHI node at the start of each state. This PHI node needs to have exactly the
same number of entries as the state has incoming edges. As the DDCGBackend resolves
these PHI nodes by memory accesses, this results in a drop in performance compared to the
JITBackend.

Another observation is that for both backends, the throughput for the medium pattern
is the highest. This is because the automaton does not have an early return option, as the
implementations of the other algorithms do. Each input text is processed until the last
character is read if the pattern is not in the input text.

However, the throughputs of the medium and long pattern are slightly above the one for
the short pattern. For those queries, the execution benefits from the starting character of the
pattern. The short pattern starts with an s, whereas the other two patterns start with an m.
As the distribution of the letters in our dataset shows, the letter s is more likely to appear
than the m. This means that the automaton for the short pattern is entered more often than for
the medium and long patterns. This highlights that the characters of the pattern and their
distribution also play a role in performance.

For the pattern composed of multiple ones, the throughput is again between that of the
short and medium patterns. However, the automaton consumes the entire input text as no
early return optimization is included. The subpatterns themselves start with an m twice and
an s once. Similarly to the explanation above, the m is found less frequently, so the throughput
is closer to the medium one than the short one.

41

4. Evaluation for Exact String Pattern Matching

0

15 M

30 M

J
IT

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

Short pattern

0

15 M

30 M

Medium pattern

0

15 M

30 M

Long pattern

0

15 M

30 M

Multiple patterns

0

6 M

12 M

D
D

C
G

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

0

6 M

12 M

0

6 M

12 M

0

6 M

12 M

Direct Tr. Blockwise Tr.

Figure 4.5.: Throughput of the different workloads with the Automaton Approach for the
DFA. We present the Direct Translation (Sect. 3.4.1) and the Blockwise Translation
(Sect. 3.4.2). (Higher is better.)

4.2.4. Comparison of the Code Generating Algorithms

Based on the results of the previous sections, we have found the best implementations and
optimizations for each of the discussed string pattern matching algorithms.

Fig. 4.6 compares the best-performing algorithms for the given workloads. However, it
should be noted that the algorithms cannot be compared that easily with another, as other
patterns will lead to other results. For short, medium, and long patterns, we can see that the
Blockwise Boyer-Moore algorithm yields the highest throughput for both the JITBackend and
the DDCGBackend. Additionally, for both the KMP and BM algorithm, the performance of
the code generating versions improve with increasing pattern length. This is because the KMP
algorithms incorporate the early return optimization which allows for faster rejection of input
texts when the pattern length exceeds the number of remaining characters in the input text.
In the BM algorithms, we do not have to add such an optimization, as the algorithm itself
compares from right to left and always checks if the end of the pattern is still inside the input
text boundaries. Our Automaton Approach do not implement the early return optimization
as including this step in the code generation process would require additional processing of
the automaton itself. Due to this, the throughput does not increase with a longer pattern.

When it comes to a pattern composed of multiple subpatterns, the best-performing algorithm
changes: In the JITBackend, the Blockwise KMP algorithm outperforms the Blockwise BM.
However, when looking at the individual subpatterns, we notice that the last character of
the subpattern is a t. This character has a higher ratio in the input text and there is a higer

42

4.2. Results

0

20 M

40 M

J
IT

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

Short pattern Medium pattern Long pattern Multiple patterns

0

15 M

30 M

D
D

C
G

B
a
ck

e
n

d
T

h
ro

u
gh

p
u

t
[T

/s
]

Blockwise KMP Blockwise BM Blockwise DFA Fast BM

Figure 4.6.: Comparison of the best throughputs of the different code generating algorithms for
the workloads. We present the best-performing algorithms for the corresponding
workload. If available, the hatched bar presents the corresponding interpreting
version of the algorithm. (Higher is better.)

probability that it is matched than the starting character of the pattern, an m, for the KMP
algorithm. Based on that insight, we can conclude that for this pattern, it is better to use the
Blockwise KMP than the Blockwise BM algorithm.

For the DDCGBackend, we can see a similar behaviour: For the short workload, the
Automaton Approach and the Blockwise KMP perform similarly. However, as the pattern
length increases, the throughput of the Automaton Approach does not improve due to the
lack of the early return optimization, while the throughput of the Blockwise KMP continues
to improve. The same holds for the Blockwise BM, whose performance increases from the
short over the medium to the long patterns. For the composed pattern (multiple patterns),
the Blockwise BM is outperformed by the alternative Fast BM implementation as the internal
resolving for the B-BM becomes too complex and the optimization starts to slow down the
execution.

43

4. Evaluation for Exact String Pattern Matching

4.2.5. Compilation Time

Another important consideration when using the code generation approach is the time
required to compile the generated code. In the interpreting approaches, the generated code
only contains calls the function performing the matching process. When replacing that with
the code generating approaches, we add several instructions and basic blocks to the generated
code. The increasing size of the code leads to a higher compilation time.

In Fig. 4.7, we present the runtime of the best-performing algorithms including the com-
pilation time. The graph displays two pieces of information: the lower portion (in a lighter
color) represents the compilation time, while the upper portion (in a darker color) represents
the execution time. contain two information: the lower one (brighter color) visualizes the
compilation time, the upper one (normal color) the time for the execution of the code. It is
worth noting that lower runtime is better.

When analyzing the performance of the JITBackend, we can see that the compilation time
for the code of the interpreting versions is relatively similar across all patterns. However, for
the code generating versions, we observe that the compilation time increases as the patterns
become longer and more complex. Specifically, the pattern composed of multiple subpatterns
leads to a higher compilation time. The Automaton Approach has a much higher latency due
to compilation than the other versions, as it introduces multiple basic blocks per state in the
automaton: The longer the pattern, the more basic blocks are generated, and the longer the
compilation takes.

0

20

40

J
IT

B
a
ck

e
n

d
R

u
n
ti

m
e

[m
s]

Short pattern

0

20

40

Medium pattern

0

20

40

Long pattern

0

20

40

Multiple patterns

0

15

30

D
D

C
G

B
a
ck

e
n

d
R

u
n
ti

m
e

[m
s]

0

15

30

0

15

30

0

15

30

Blockwise KMP
Blockwise BM

Blockwise DFA
Fast BM

Execution time
Compilation time

Figure 4.7.: Compilation and execution times for the best-performing algorithms on the TPC-
H dataset with one thread. If available, the hatched bar is the interpreting version.
The stacked bar is composed of the compile and execution time. (Lower is better.)

44

4.2. Results

In the DDCGBackend, the use of the code generation framework and compiler backend
helps to minimize compilation time and resulting latency, as presented in [KLN21]. Similarly
to the JITBackend, the compile time for the interpreting approaches remains consistent across
different patterns. However, for the code generating approaches, we notice a slight increase in
compilation time with longer patterns, though the increase is hardly noticeable. Again, the
Automaton Approach has the highest increase in compilation time with longer patterns.

When taking into account both the compilation and execution time, we can see that in nearly
all combinations of backend, pattern size, and applied algorithm, the code generation performs
better than the interpreting ones. The only exceptions are when using the JITBackend for
the long and multiple pattern workloads: in the former case, the Automaton Approach is
outperformed by all other implementations and is slower than the interpreting versions. In
the latter case, the Automaton Approach is slower than the interpreting versions due to the
high latency caused by the compilation overhead, and the code generating Blockwise KMP
is also slower than its interpreting version. However, the main reason is the compile time
difference between the two versions.

4.2.6. ClickBench Results

The main problem of code generation is latency caused by compiling the code. In this section,
we will examine the impact of running queries on a larger dataset and using multiple threads
to run a single query. When executing the generated code with a single thread on a small
dataset, a significant portion of the total runtime is spent on compiling the code, as shown in
Figure 4.7.

When running a query on a larger dataset like ClickBench, we expect the effect of compila-
tion on the total runtime to be smaller. However, using multiple threads to run one query
should result in a decrease in overall execution time. Fig. 4.8 shows the overall single-threaded
runtimes for the queries on the ClickBench dataset, Fig. 4.9 with eight, and Fig. 4.10 with 20
threads (in all figures, we present the overall runtimes, so lower is better).

For all queries, we notice that the Blockwise BM is outperformed by the Fast BM, especially
in the code generating approaches; so, we replace the results for the Blockwise BM with
the Fast BM. When looking at the performance records for the implementations in both
interpreting and code generating approaches, we can see that the compiler rearranges the
instructions for the Fast BM and generates a tight loop in which the shift value from δ0 is
added to find the last character of the pattern. The hotspots for the Fast BM code are when
reading the shift value, reading the next character of the input text, and checking if we had a
match or not. In the Blockwise BM, the code is not that tight due to the increased number
of instructions and we also require an unaligned load from memory as we start reading at
random positions of the input text. Other hotspots are throughout the bitwise and arithmetic
operations to determine if there is an occurrence or not and, in the case there is one, finding
the index at which it is also takes several cycles.

One thread. As presented in Fig. 4.8, when using one thread for the workload, the compile
time makes up only a small percentage of the overall runtime. For the execution of the
generated code, we see a similar behaviour as for the TPC-H scheme. For both backends,
almost all code generating versions have a better runtime than their interpreting versions.

45

4. Evaluation for Exact String Pattern Matching

Additionally, we also notice that the Automaton Approach performs similarly to the other
algorithms. By using the bigger dataset, the huge compilation overhead for the generated
code of this approach can be amortized and achieve almost the same runtime as the Blockwise
KMP.

For the JITBackend, we clearly benefit from the code generation for the patterns. The
execution times for the interpreting algorithms are all slower than for the code generating
approaches and the compile time does not have a huge effect for the overall performance.

In the DDCGBackend, we notice that the two Blockwise KMP versions do not differ
that much. Especially, for Query 22, the interpreting version is slightly faster than the
code generating implementation. However, for the other approaches, we again see better
performance of the code generating versions than the interpreting ones.

0

6

12

J
IT

B
a
ck

e
n

d
R

u
n
ti

m
e

[s
]

Query 20

0

1

2

Query 21

0.0

1.5

3.0

Query 22

0

6

12

Query 23

0

6

12

D
D

C
G

B
a
ck

e
n

d
R

u
n
ti

m
e

[s
]

0

1

2

0.0

1.5

3.0

0

6

12

Blockwise KMP
Fast BM

Blockwise DFA Execution time
Compilation time

Figure 4.8.: Compilation and execution times for the best-performing algorithms on the
ClickBench dataset using 1 thread. If available, the hatched bar is the interpreting
version. The stacked bar is composed of the compile and execution time. (Lower
is better.)

Eight threads. The compilation and execution times for the queries using 8 threads can be
seen in Fig. 4.9. Compared to the single-threaded execution, we achieve a huge speedup of
the queries by using multiple threads for the execution.

In the JITBackend, we observe that the compile time for the queries start to make up
a noticalbe portion of the runtime for Query 21 and 22. As before, the code generating
approaches perform better than the interpreting approaches. For all queries and algorithms,
code generation is faster, in some cases even by a factor of two. Similarly to the single-threaded
execution, the compilation overhead for the Automaton Approach is balanced out by the
longer runtime on the larger dataset, so it performs similarly to the Blockwise KMP algorithm.

For the DDCGBackend, the code generating versions are also better, but not as much of a

46

4.2. Results

factor as for the other backend. Looking at the Blockwise KMP versions, the code generation
only leads to a small performance improvement compared to the interpretation. For Query
22, the interpretation and the code generation are almost equal. For the BM, we can see a
performance gain of up to a factor of 1.5. Similarly to before, the Automaton Approach is in
the same range of runtime as the KMP and BM algorithm.

0

800

1600

J
IT

B
a
ck

e
n

d
R

u
n
ti

m
e

[m
s]

Query 20

0

150

300

Query 21

0

200

400

Query 22

0

800

1600

Query 23

0

800

1600

D
D

C
G

B
a
ck

e
n

d
R

u
n
ti

m
e

[m
s]

0

150

300

0

150

300

0

800

1600

Blockwise KMP
Fast BM

Blockwise DFA Execution time
Compilation time

Figure 4.9.: Compilation and execution times for the best-performing algorithms on the
ClickBench dataset using 8 threads. If available, the hatched bar is the interpreting
version. The stacked bar is composed of the compile and execution time. (Lower
is better.)

20 threads. In our final experiment, we executed the queries using 20 threads. Once again,
we see that for all workloads and algorithms, the code generating ones are more efficient.
Fig. 4.10 shows the compile and execution time for the workload. For the execution times, we
see a similar pattern as in the single-threaded case of when using 8 threads.

In the JITBackend, the compile time makes up almost half of the overall runtime of Query
21 and 22. However, the advantages of code generation still outweigh the interpretation,
altough the effects are not as drastic anymore. For the queries 20 and 23, we still see a
performance improvement in the execution time by nearly a factor of 2. When the Automaton
Approach is used, we start to notice the drawback of the higher compilation time. Although
the execution time is about the same as for the KMP, the compile time is higher which results
in a slightly worse overall runtime. However, the generated code is still faster than both the
interpreting KMP and BM.

For the DDCGBackend, the compile time does not take such a large ratio of the runtime.
However, due to the limitations of the backend, the performance benefits of the code generating
algorithms are not as significant. Only for the BM algorithm, the code generation runtime
is around 50% faster than the interpreting one. For the KMP and Automaton Approach, the

47

4. Evaluation for Exact String Pattern Matching

benefit is not that much as for the BM, but the code generation is faster than the interpretation.

0

300

600

J
IT

B
a
ck

e
n

d
R

u
n
ti

m
e

[m
s]

Query 20

0

80

160

Query 21

0

80

160

Query 22

0

300

600

Query 23

0

300

600

D
D

C
G

B
a
ck

e
n

d
R

u
n
ti

m
e

[m
s]

0

60

120

0

60

120

0

300

600

Blockwise KMP
Fast BM

Blockwise DFA Execution time
Compilation time

Figure 4.10.: Compilation and execution times for the best-performing algorithms on the Click-
Bench dataset using 20 threads. If available, the hatched bar is the interpreting
version. The stacked bar is composed of the compile and execution time. (Lower
is better.)

48

5. Non-Exact Pattern Matching

In the preceding chapters, we have extensively explored exact pattern matching using LIKE
expressions, with a specific focus on patterns that only include the % wildcard. However, as the
LIKE expression also allows the use of the _ wildcard, it is necessary to also consider non-exact
pattern matching. Unlike exact pattern matching, there are fewer algorithms available for
handling patterns with ‘Don’t Care’ characters. One such algorithm, presented by Gusfield
in [Gus97], involves splitting the subpattern at the Don’t Care symbols and searching for each
of these character sequences individually. Indices for these sequences are stored, and later, we
check whether we can find an index for each of the subsequences that fulfill the requirements
of the number of Don’t Care symbols between them. However, the algorithm described above
is complex, as it requires storing various information about the indices, making it difficult to
implement a code generation approach.

In this chapter, we present two alternative approaches for dealing with these types of
patterns and generating code to perform the matching process. For simplification, we assume
that the patterns do not start with a Don’t Care symbol. If a Don’t Care symbol is at the start
of a pattern, we would scan through the pattern from the start until the first character that
is not a Don’t Care wildcard is found and handle the previous _ wildcards with the pattern
before.

5.1. Extended Automaton Approach

In Sect. 2.4, we have discussed a new approach how to generate an automaton from a LIKE
expression by explaining the steps how to build a Like-NFA from the given pattern. However,
we only included the handling of % wildcards as only those are allowed for exact pattern
matching.

5.1.1. Extended Like-NFA

To address the issue of non-exact pattern matching, we must implement a new case to handle
the _ wildcard character. With this addition, we have a total of four rules for constructing a
Like-NFA from the pattern:

_ : add an edge accepting Σ to the last state going to a newly added state at the end

% : add a loop to the last state accepting Σ

ESC : go to the escaped character α and add edge accepting α to the last state going to a
newly added state at the end

α ∈ Σ : add edge accepting α to the last state going to a newly added state at the end

By applying the rules above, we see that an _ wildcard is handled like a normal character
by leading from one state to the next one, just that the transition accepts any character.

49

5. Non-Exact Pattern Matching

Example. In Fig. 5.1, we see the automaton for the pattern %a_ba%. Like with exact pattern
matching, the transitions between the states represent the pattern, with the exception of the Σ
transition between states q1 and q2, which represents the _ wildcard.

q0 q1 q2 q3 q4
a Σ b a

Σ Σ

Figure 5.1.: Extended Like-NFA for pattern %a_ba%

5.1.2. Extended Like-DFA

With the addition of a new rule for building a Like-NFA from a pattern, we must also revise
our approach for constructing the Like-DFA from the Like-NFA. We continue to use the KMP
approach to determine the lps state, but now require a special case to handle the Σ transitions
between states.

When processing a pattern with a _ wildcard character, it is necessary to keep track of the
character that was read for the corresponding wildcard. The code in Listing 5.1 demonstrates
how the determinization process works for the Extended Like-NFA.

1 determinizeExtended(nfa)
2 [subPatStart, subPatEnd] = getNextSubpattern(nfa);
3 // initialize the fifoList with current and its lps
4 fifoList = initializeFIFO(subPatStart.next, subPatStart);
5 while (fifoList.hasElement())
6 [current, lps] = fifoList.popFirstElement();
7 fTChar = current.forwardTransition.character;
8 if (fTChar != Σ)
9 // handle case A

10 for (transition : lps.transitions)
11 if (transition.character == fTChar) continue;
12 current.transitions.insert(transition);
13 if (lps.forwardTransition.character != fTChar)
14 current.transitions.insert(lps.forwardTransition);
15 fifoList.append(current.next, determineNextLps(lps, fTChar));
16 else
17 // handle case B
18 copiedStates = copyStates(current.next, subPatEnd);
19 relinkedState = relink(current, lps, copiedStates);
20 fifoList.append(relinkedState, lps.next);
21 fifoList.append(current.next, determineNextLps(lps, Σ));

Listing 5.1: Algorithm to convert an Extended Like-NFA into an Extended Like-DFA

When converting an Extended Like-NFA to an Extended Like-DFA, it is necessary to keep
track of the longest proper prefix (lps) state for each state. To achieve this, the Like-NFA is
traversed in a breadth-first order using a First-In-First-Out (FIFO) queue.

During each iteration, the first element of the queue is taken and processed (line 6). If the
forward transition of the current state is not a Σ transition, then the process is similar to the

50

5.1. Extended Automaton Approach

one described in Sect. 2.4.2. The lps transitions are added to the current state; the next state
and its corresponding lps state are added to the FIFO queue for the next iteration (line 15).

However, when we encounter a Σ transition as a forward transition, additional steps must
be taken to keep track of which character is read at that position. As the current lps state has
exactly one forward transition, we know that it matters whether the character read for the Σ
transition is the same as the character of the forward transition of the lps or not. To resolve
this in the automaton, we need to copy all of the states following the one reached by the Σ
transition up to the state whose forward transition leads to the end state of the subpattern
(line 18). This is done by the function copyStates(...) which returns a pointer to the head
of the newly copied states. This head will now be linked to the current state with a new
transition (line 19). This transition must accept the same character as the forward transition
of the lps state, which means that, in case of a Non-ASCII character, we additionally need
to copy the states of the character of the lps’ forward transition. All of that functionality is
handled in the function relink(...) which returns a pointer to the first state of the newly
added states.

After the relinking took place, we need to insert two new pairs into the FIFO queue. The
first pair is the relinked state and its new lps pointer. The second pair is the state that is
reached by the Σ transition, but we need to call the determineNextLps(...) function to
determine the corresponding lps state.

Example. In Fig. 5.2, we present the Extended Like-DFA for the pattern %a_ba%. State q1

now has two outgoing transitions: one Σ transition to q2 and one with character a to q5. This
allows us to implicitly store which character was read for the Don’t Care wildcard.

q0 q1 q5 q6 q4

q2 q3

a a b a

Σ

b

a

Σ b

a

Σ

Σ

Σ

Σ Σ

a

Figure 5.2.: Extended Like-DFA for pattern %a_ba%

Let us examine an example for this automaton: Imagine we have reached state q6, indicating
that the last three characters of the input text must be aab. From there on, we need to consider
the following three cases:

• If the next character is an a, we have found the substring aaba which matches the pattern.
Therefore, we proceed to state q4 to accept the input text as a match.

• If the next character is a b, we have found the substring aabb which does not match
the pattern. However, the last three characters of the input text match the first three
characters of the pattern. Therefore, we need to end in state q3.

51

5. Non-Exact Pattern Matching

• If the next character is neither an a nor a b, we must return to the start state q0, as no
suffix of the input matches a prefix of the pattern.

5.2. Reduced Automaton Approach

In the previous section, we discussed the option of building a full automaton from the
given pattern. However, during implementation, we encountered a limitation of some of the
backends of Umbra, which prevents the code generation framework from generating and
executing code that contains irreducible loops [Hav97]. This limitation can cause problems
during execution and, in the worst case, even cause the database system to crash when certain
patterns are used.

To address this challenge, we present an alternative approach for translating patterns with
Don’t Care wildcards to code. This approach requires backtracking in the input text if a
mismatch occurs.

Preparation. The concept of this approach is as follows:

1. First, we convert the pattern into an Extended Like-NFA using the rules outlined in
Sect. 5.1.1.

2. During the determinization process to a Reduced Like-DFA, we do not construct the full
automaton as we did in the approach outlined in Sect. 5.1.2.
Instead, we divide the Extended Like-NFA into logical parts:

• Part A includes the states from the start state to the first state whose forward
transition is a Σ transition.

• Part B begins at the state where Part A ends and goes to that state after which only
Σ transitions follow.

• Part C includes the remaining states from the previous one until the last one.

3. For Part A, we can apply the standard algorithm for determinization of the Like-DFA.
The other parts remain unchanged.

With that, we receive a Reduced Like-DFA which is used for the following code generation.

Code Generation. During the code generation of the Reduced Like-DFA, we utilize the
different parts defined earlier. At the start, we include a backtracking block, which sets the
position in the input text and saves the next index in case of backtracking.

For Part A, we have built the full automaton, for which we can generate code directly.
For Part B, we write out the different types of forward transitions that can be found: For Σ
transitions, we generate code to skip the corresponding number of bytes in the input text
and to go to the next state. For transitions with a specific character, we generate code to
compare this character with the character from the input text. If the characters match, we
go to the next state; if not, we need to start backtracking. To do this, we jump back to the
previously generated backtracking block in which we stored the index at which the last scan
of the pattern started, move one position to the right, store the new index again, and perform

52

5.2. Reduced Automaton Approach

the next matching phase. For Part C, we generate code to consume the corresponding number
of bytes in the input text and move on.

In Fig. 5.3, we present the conceptual idea of the Reduced Like-DFA for the pattern %ab_a__%.
The generated code can be found in Listing 5.2.

qB q0 q1 q2 q3 q4 q5 q6
a b Σ a Σ Σ

Σ Σa

Σ

Part A Part B Part C

Figure 5.3.: Extended Like-NFA for pattern %ab_a__%. The state qB and dashed edges are
inserted during the code generation process to handle backtracking.

1 // backtracking block
2 qB: tPos = tPosBefore + 1; goto q0;
3 // handling Part A
4 q0: if (tPos >= text.size()) { return false; }
5 c = text[tPos];
6 if (c == ’a’) { tPos++; goto q1; }
7 else { tPos += Utf8::length(c); goto q0; }
8 q1: if (tPos >= text.size()) { return false; }
9 c = text[tPos];

10 if (c == ’a’) { tPos++; goto q1; }
11 else if (c == ’b’) { tPos++; goto q2; }
12 else { tPos += Utf8::length(c); goto q0; }
13 // handling Part B
14 q2: if (tPos >= text.size()) { return false; }
15 c = text[tPos];
16 tPos += Utf8::length(c); goto q3;
17 q3: if (tPos >= text.size()) { return false; }
18 c = text[tPos];
19 if (c == ’a’) { tPos++; goto q4; }
20 else { goto qB; }
21 // handling Part C
22 q4: if (tPos >= text.size()) { return false; }
23 c = text[tPos];
24 tPos += Utf8::length(c); goto q5;
25 q5: if (tPos >= text.size()) { return false; }
26 c = text[tPos];
27 tPos += Utf8::length(c); goto q6;
28 q6: return true;

Listing 5.2: Generated code for the automaton in Fig. 5.3 for the pattern %ab_a__%

53

6. Conclusions and Outlook

In this chapter, we want to discuss the results we got from the experiments, summarize them,
and answer the question whether to generate code for the pattern or to interpret it.

With our experiments, we are confident to show the benefits of code generation for pattern
matching; however, no experiment can be complete enough to represent each application
and algorithm in every situation. Moreover, we hope that the database developer recalls that
choosing the wrong algorithm, whether interpreting or code generating, for the wrong dataset
and application can have significant effects on performance and runtime.

6.1. Code Generation Independent Insight

All of the points listed here apply for both the interpreting and the code generating algorithms
we looked at in our experiments.

Distribution of characters. As one can see from the used datasets introduced in Sect. 4.1.2,
we intend to perform our experiments on real-world like text datasets. This means that our
alphabet is sufficiently large and the input texts are not just a repetition of a few characters,
as it would be for e.g. gene sequences. In our cases, the TPC-H dataset covers all lowercase
ASCII-letters and the whitespace character; the ClickBench dataset includes several different
characters like lowercase and uppercase letters, special characters, and also Non-ASCII
characters.

The first observation is that the distribution of the characters in the input text and pattern
matters. Although we only present the results for the given patterns, we noticed that changing
the pattern leads to varying throughputs. The reason is that the algorithms like the Boyer-
Moore ones or the ones with the blockwise optimization search for a certain character in the
input text. If the probability of the searched character in the input text is low, more of the
input text can be processed before an occurrence is found; if it is high, then the character
is found more often and a matching process must start. For the algorithms with blockwise
processing or the ones searching for a specific character to start the matching process, that
could even lead to a slowdown of the execution if the character is found too often.

When looking at the ClickBench Query 20 and the single-threaded results for it in Fig. 4.8,
we can see the effect we have discussed: the pattern in that query is just %google%. Combining
it with the distribution of the letters in Table C.1, the letter g makes up around 1% of all
letters, whereas the letter e over 5%. This effect is also noticeable in the results, as the BM
implementation which searches for the e in the input text takes nearly twice the time the KMP
algorithm takes which searches for the g. The BM needs to stop and start the pattern matching
process more often than the KMP does and thus requires more time to search for the pattern.

With that in mind, we cannot say exactly which algorithm is best for which pattern. The
performance depends on several factors like the size of the alphabet, the distribution of the

55

6. Conclusions and Outlook

characters in the input text, and the characters in the pattern.

Pattern length. Another quite important part of the overall performance is the pattern length
and the optionally applied early return optimizations. With longer patterns, one can detect
earlier if the pattern exceeds the input text and reject that input text. As we have seen on
the TPC-H dataset, longer patterns achieved a higher throughput for all algorithms as both
the optimized KMP and the regular BM algorithms stop the execution once the input text is
exceeded. For the Automaton Approach, this does not hold, as we do not generate code for
the early return optimization. Due to this, the throughput does not increase as it does for the
other implementations for longer patterns.

6.2. Code Generation Dependent Insight

In this section, we deal with points that have a direct effect on the code generation for the
algorithms.

Choosing the matching algorithm. As discussed before, the choice of the algorithm to
perform the pattern matching process itself is not straightforward, as it depends on several
factors like the character distribution in the input text or the number of different characters
in the pattern. Based on the results, we cannot directly say which of the KMP or the BM
algorithms is better for pattern matching, as it depends on the pattern. However, once
the algorithm was chosen, our results clearly show that it makes sense to generate code
for the matching process instead of using the interpreting approach. The main drawback
of the interpreting algorithms is both the preprocessing of the patterns, which can take a
significant part of the overall runtime, and the repeating access to the pattern and the results
of the preprocessing. In the code generating approaches, this only needs to be done once at
generation time and then no further accesses to pattern or preprocessed tables is required.

Compilation backend. After generating the code, we need to compile and then execute it.
As we have seen before, the performance depends on the chosen backend: in the JITBackend,
the compilation latency is quite high, but can be evened out most of the time when executing
the query; for the DDCGBackend, the compilation time is very low, but the generated code
is not much faster due to some internal restrictions. Additionally, we notice that in the
DDCGBackend, the performance also depends on the structure of the generated code, as
interleaved loops with many PHI nodes in the code slow down the execution, as it is the case
for the Original KMP.

However, for both backends, it is obvious that a suitable code generation approach can
be found which then leads to a higher throughput in most of the cases compared to the
interpreting alternative.

6.3. Outlook

With the previous algorithms, we have covered exact pattern matching algorithms which are
already known for quite some time. Umbra itself already includes an interpreting version

56

6.3. Outlook

of a hybrid string search algorithm. For some patterns fulfilling certain length conditions,
the hybrid search uses the SSE4.2 vector instruction _mm_cmpistri, which compares packed
strings; for all other patterns, the default Two Way Search algorithm is applied. The Two Way
Search combines both the KMP and BM algorithm to perform the matching process [CP91].
Until now, we have already implemented a code generating version for the Two Way algorithm.
One future project could be to add support for the required SSE4.2 instructions in Umbra. With
these instructions, we can implement the hybrid string search algorithm as a code generating
version to generate specific code for a given pattern and to analyze the performance.

In this thesis, we have primarily covered and analyzed exact matching algorithms, which
only involve % wildcards. However, to fully support the SQL LIKE expression, we also
need to consider the use of the _ wildcard. This topic was briefly discussed in Chapter 5.
We have developed two methods to extend the Automaton Approach to handle patterns
with any combination of wildcards. The two options presented, the Extended and Reduced
Automaton, can be used for code generation. A potential next step would be to evaluate
the performance of these approaches in comparison to a manually implemented matching
function. Additionally, incorporating the previously discussed pattern matching algorithms
with the concept of pattern splitting could be explored as a means of applying code generation
for pattern matching.

57

A. Blockwise Processing

A.1. Blockwise Search for ASCII character - Example

Table A.1 lists the example for the blockwise search of the ASCII character 0x44 in the block
0x4142434445464748. The code for this search was presented in Listing 2.5.

block 0x4142434445464748
searchedChar = broadcast(0x44) 0x4444444444444444

high 0x8080808080808080
low 0x7F7F7F7F7F7F7F7F

lowChars = (˜block) & high 0x8080808080808080
t1 = block & low 0x4142434445464748

t2 = t1 ˆ searchedChar 0x050607000102030C
t3 = t2 + low 0x8485867F8081828B

t4 = t3 & high 0x8080800080808080
found = ˜t4 0x7F7F7FFF7F7F7F7F

matches = found & lowChars 0x0000008000000000

Table A.1.: Blockwise processing to search 0x44 in 0x4142434445464748

59

A. Blockwise Processing

A.2. Blockwise Search for Non-ASCII character

Listing A.1 shows the modified code to search for the start byte of a Non-ASCII character.
Table A.2 lists the example for the blockwise search of the Non-ASCII character 0xA4 in the
block 0x414243A4B5C64724.

1 uint64_t block = loadNext8Bytes(ptrToText);
2 uint64_t searchedChar = broadcast((c & 0x7F)); // broadcast c to each byte
3 constexpr uint64_t high = 0x8080808080808080ull;
4 constexpr uint64_t low = ~high;
5 uint64_t highChars = block & high;
6 uint64_t found = ~((((block & low) ^ pattern) + low) & high);
7 uint64_t matches = found & highChars;
8 bool matchFound = matches != 0;

Listing A.1: Blockwise Character Search for Non-ASCII characters

block 0x414243A4B5C64724
searchedChar = broadcast((0xA4 & 0x7F)) 0x2424242424242424

high 0x8080808080808080
low 0x7F7F7F7F7F7F7F7F

highChars = block & high 0x0000008080800000
t1 = block & low 0x4142432435464724

t2 = t1 ˆ searchedChar 0x6566670011626300
t3 = t2 + low 0xE4E5E67F90E1E27F

t4 = t3 & high 0x8080800080808000
found = ˜t4 0x7F7F7FFF7F7F7FFF

matches = found & highChars 0x0000008000000000

Table A.2.: Blockwise processing to search 0xA4 in 0x414243A4B5C64724

60

B. Determinization of Like-NFA

In Fig. B.1, we present the process to determinize the Like-NFA from Fig. 2.3. Every step is
annotated with an explanation what changes are made and why by referring to Listing 2.10.

q0 q1 q2 q3 q4
a b a a

Σ Σ

(a) Like-NFA to pattern %abaa%

q0 q1 q2 q3 q4
a b a a

Σ Σ

(b) Initialization: lps = q0, current = q1

q0 q1 q2 q3 q4
a b a a

Σ Σa

Σ
(c) Adding transitions of lps to current

q0 q1 q2 q3 q4
a b a a

Σ Σa

Σ
(d) Advancing current with character b to q2, lps stays in q0 due to Σ transition.

q0 q1 q2 q3 q4
a b a a

Σ Σa

Σ
(e) Adding transitions of lps to current. As the forward transition of current has the letter a, we only

add the Σ transition of q0.

61

B. Determinization of Like-NFA

q0 q1 q2 q3 q4
a b a a

Σ Σa

Σ
(f) Advancing current with character a to q3, lps moves to q1 due to forward transition.

q0 q1 q2 q3 q4
a b a a

Σ Σa

Σ

b

(g) Adding transitions of lps to current. As the forward transition of current has the letter a, we only
add the Σ transition of q1.

q0 q1 q2 q3 q4
a b a a

Σ Σa

Σ

b

(h) Advancing current with character a to q4, lps stays in q1 due loop with character a. Termination of
the algorithm as end of section reached.

Figure B.1.: Step-by-step determinization of the Like-NFA of pattern %abaa%

62

C. Distribution of ClickBench Dataset

character ratio [%]
15 5.5128 · 10−08

23 3.3077 · 10−08

24 1.3230 · 10−07

25 1.1025 · 10−08

26 1.4333 · 10−07

27 6.6154 · 10−08

28 1.4333 · 10−07

29 6.6154 · 10−08

␣ 0.7085
! 0.0053
" 0.3393
0.1551
$ 0.0006
% 0.8889
& 1.9633
’ 0.0005
(0.0634
) 0.0581
* 0.0006
+ 0.0015
, 0.2187
- 1.1360
. 2.5085
/ 5.2571
0 1.9912
1 1.9697
2 1.9619
3 1.5160
4 0.8768
5 1.1263
6 1.2414
7 1.0524
8 0.9003
9 0.9841
: 1.1528

character ratio [%]
; 0.1030
< 0.0011
= 2.2382
> 0.0001
? 0.4663
@ 0.0004
A 0.1510
B 0.0569
C 0.1427
D 0.3235
E 0.1108
F 0.4601
G 0.0789
H 0.0492
I 0.2033
J 0.0189
K 0.0674
L 0.1122
M 0.1432
N 0.1159
O 0.0743
P 0.0727
Q 0.0157
R 0.1122
S 0.1107
T 0.1896
U 0.0823
V 0.0947
W 0.0907
X 0.0461
Y 0.0329
Z 0.0263
[0.0921
\ 0.0012
] 0.0949

character ratio [%]
ˆ 3.7377 · 10−06

_ 1.3734
‘ 9.3387 · 10−06

a 4.6978
b 0.8836
c 1.9633
d 2.3606
e 5.2432
f 0.6899
g 1.0464
h 2.8257
i 4.1304
j 0.1557
k 1.1877
l 2.3201
m 1.8866
n 2.3531
o 4.0155
p 3.4544
q 0.0365
r 4.9654
s 3.2526
t 5.5865
u 2.5190
v 0.8533
w 0.6793
x 0.6762
y 1.0674
z 0.2436
{ 0.0011
| 0.0028
} 0.0019
~ 0.0094

Table C.1.: Distribution of the ASCII characters in the ClickBench dataset

63

C. Distribution of ClickBench Dataset

character ratio [%]
128 0.2006
129 0.1103
130 0.1338
131 0.0507
132 0.0128
133 0.0141
134 0.0078
135 0.0243
136 0.0199
137 0.0089
138 0.0003
139 0.0823
140 0.0597
141 0.0024
142 0.0103
143 0.0439
144 0.0037
145 0.0084
146 0.0026
147 0.0021
148 0.0123
149 0.0016
150 0.0014
151 0.0012
152 0.0022
153 0.0003
154 0.0093
155 0.0032
156 0.0062
157 0.0043
158 0.0043
159 0.0148
160 0.0053
161 0.0099

character ratio [%]
162 0.0054
163 0.0010
164 0.0036
165 0.0005
166 0.0010
167 0.0006
168 0.0007
169 0.0001
170 9.2285 · 10−06

171 0.0007
172 0.0003
173 0.0013
174 0.0011
175 0.0007
176 0.1682
177 0.0746
178 0.0778
179 0.0274
180 0.0928
181 0.1934
182 0.0210
183 0.0256
184 0.2415
185 0.0410
186 0.1429
187 0.1119
188 0.0698
189 0.1517
190 0.2729
191 0.1245
194 0.0011
195 0.0005
196 1.4003 · 10−05

197 6.2405 · 10−06

character ratio [%]
198 7.7179 · 10−08

200 1.1026 · 10−08

201 5.9539 · 10−07

204 1.2018 · 10−06

206 7.3872 · 10−07

207 8.1479 · 10−06

208 1.9439
209 0.7829
210 3.9263 · 10−05

211 5.2262 · 10−06

213 1.2459 · 10−06

214 3.0872 · 10−07

215 2.4862 · 10−05

216 2.5458 · 10−05

217 1.5799 · 10−05

219 2.0949 · 10−07

224 2.8667 · 10−07

225 1.0254 · 10−06

226 0.0004
227 6.6154 · 10−08

228 6.2846 · 10−07

229 2.3816 · 10−06

230 2.4587 · 10−06

231 1.5105 · 10−06

232 1.0254 · 10−06

233 7.8282 · 10−07

234 3.3077 · 10−08

235 1.4333 · 10−07

236 1.2128 · 10−07

237 3.3077 · 10−08

239 3.7410 · 10−05

240 5.5128 · 10−08

Table C.2.: Distribution of the bytes of the Non-ASCII characters in the ClickBench dataset

64

List of Figures

2.1. Visualization of the shift of the pattern when mismatch at j occurs 7
2.2. Visualization of the shift by the Good Suffix Heuristics 14
2.3. Like-NFA for pattern %abaa% . 18
2.4. Like-DFA for pattern %abaa%. A Σ transition consumes all characters which are

not explicitly a character of any transition of the state. 20

3.1. General control flow of the generated code for the Original KMP algorithm.
A green arrow is taken if the previous check evaluates to true, the red arrow
otherwise. 23

3.2. General control flow of the generated code for the KMP algorithm with one
loop. A green arrow is taken if the previous check evaluates to true, the red
arrow otherwise. 24

3.3. Modified control flow of the generated code for the KMP algorithm with one
loop to include optimizations. A green arrow is taken if the previous check
evaluates to true, the red arrow otherwise. 26

3.4. General control flow of the generated code for the Original BM. A green arrow
is taken if the previous check evaluates to true, the red arrow otherwise. . . . 27

3.5. General control flow of the generated code for the Fast BM. A green arrow is
taken if the previous check evaluates to true, the red arrow otherwise. 29

3.6. Conceptual control flow of the generated code for the pattern α%β%γ%δ. Each
node encapsulates the whole functionality noted down in it. A green arrow
is taken if the previous check or algorithm evaluates to true, the red arrow
otherwise. 32

4.1. Distribution of the ASCII characters in the input texts of the TPC-H scheme . 35
4.2. Throughput for the different workloads of the KMP algorithms. For each algo-

rithm, the left (hatched) bar presents the throughput of the interpreting version,
the right one is the code generating version. At the left of the dashed vertical
line, the Original KMP (Sect. 2.2.2 and 3.2.1) is shown with its optimization;
on the right, the KMP with One Loop (Sect. 2.2.3 and 3.2.2) and its optimized
algorithms are shown. (Higher is better.) . 36

4.3. Throughput for the different workloads of the unoptimized OL-KMP and of
the compressed OL-KMP. The left (hatched) bar presents the throughput of the
interpreting version, the right one is the code generating version. (Higher is
better.) . 38

65

List of Figures

4.4. Throughput for the different workloads of the BM algorithms. For each al-
gorithm, the left (hatched) bar presents the throughput of the interpreting
version, the right one is the code generating version. We present the Original
BM (Sect. 2.3.2 and 3.3.1), the Fast BM (Sect. 2.3.3 and 3.3.2), and the Blockwise
BM (Sect. 2.3.4 and 3.3.3). (Higher is better.) . 39

4.5. Throughput of the different workloads with the Automaton Approach for
the DFA. We present the Direct Translation (Sect. 3.4.1) and the Blockwise
Translation (Sect. 3.4.2). (Higher is better.) . 42

4.6. Comparison of the best throughputs of the different code generating algorithms
for the workloads. We present the best-performing algorithms for the corre-
sponding workload. If available, the hatched bar presents the corresponding
interpreting version of the algorithm. (Higher is better.) 43

4.7. Compilation and execution times for the best-performing algorithms on the
TPC-H dataset with one thread. If available, the hatched bar is the interpreting
version. The stacked bar is composed of the compile and execution time. (Lower
is better.) . 44

4.8. Compilation and execution times for the best-performing algorithms on the
ClickBench dataset using 1 thread. If available, the hatched bar is the interpret-
ing version. The stacked bar is composed of the compile and execution time.
(Lower is better.) . 46

4.9. Compilation and execution times for the best-performing algorithms on the
ClickBench dataset using 8 threads. If available, the hatched bar is the inter-
preting version. The stacked bar is composed of the compile and execution
time. (Lower is better.) . 47

4.10. Compilation and execution times for the best-performing algorithms on the
ClickBench dataset using 20 threads. If available, the hatched bar is the inter-
preting version. The stacked bar is composed of the compile and execution
time. (Lower is better.) . 48

5.1. Extended Like-NFA for pattern %a_ba% . 50
5.2. Extended Like-DFA for pattern %a_ba% . 51
5.3. Extended Like-NFA for pattern %ab_a__%. The state qB and dashed edges are

inserted during the code generation process to handle backtracking. 53

B.1. Step-by-step determinization of the Like-NFA of pattern %abaa% 62

66

List of Tables

2.1. Example texts and results for the pattern red%green%blue. Bold part of the text
means an expected match with the pattern; italics means a mismatch. 6

2.2. Process to build the lps table for the pattern abaa. The bold numbers were
already calculated in the previous iterations. 8

2.3. KMP search for pattern abaa in text ababacabaa 9
2.4. Regular and compressed LPS table for the pattern abaabab. The arrows visualize

the “bouncing ball” if a mismatch at index 5 occurred. 10
2.5. Search for pattern abaa in text ababacabaa using Bad Character Heuristics . . 13
2.6. Negative shift with Bad Character Heuristics . 13

A.1. Blockwise processing to search 0x44 in 0x4142434445464748 59
A.2. Blockwise processing to search 0xA4 in 0x414243A4B5C64724 60

C.1. Distribution of the ASCII characters in the ClickBench dataset 63
C.2. Distribution of the bytes of the Non-ASCII characters in the ClickBench dataset 64

67

Listings

2.1. Preprocessing of KMP . 7
2.2. Original KMP (O-KMP) . 8
2.3. KMP with One Loop (OL-KMP) . 9
2.4. Compressed preprocessing of KMP . 11
2.5. Blockwise search for ASCII character c . 11
2.6. Preprocessing for the Bad Character Heuristics 13
2.7. Preprocessing for the Good Suffix Heuristics . 14
2.8. Original BM (O-BM) . 15
2.9. Fast BM (F-BM) . 16
2.10. Algorithm to convert a Like-NFA into a Like-DFA 19
2.11. Determine the next lps state . 20

3.1. Generated code for automaton in Fig. 2.4 for the pattern %abaa% 30
3.2. Generated blockwise code for automaton in Fig. 2.4 for the pattern %abaa% . . 31

5.1. Algorithm to convert an Extended Like-NFA into an Extended Like-DFA . . . 50
5.2. Generated code for the automaton in Fig. 5.3 for the pattern %ab_a__% 53

A.1. Blockwise Character Search for Non-ASCII characters 60

69

Bibliography

[ALX16] S. Agarwal, D. Liu, and R. Xin. Apache Spark as a Compiler: Joining a Billion Rows
per Second on a Laptop. 2016. url: https://www.databricks.com/blog/2016/05/
23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-
laptop.html. (accessed: 20.12.2022).

[BM77] R. S. Boyer and J. S. Moore. “A Fast String Searching Algorithm.” In: Commun.
ACM 20.10 (1977), pp. 762–772. doi: 10.1145/359842.359859.

[CP91] M. Crochemore and D. Perrin. “Two-Way String Matching.” In: J. ACM 38.3 (1991),
pp. 651–675. doi: 10.1145/116825.116845.

[Dia+13] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher, N. Verma,
and M. Zwilling. “Hekaton: SQL server’s memory-optimized OLTP engine.” In:
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013. Ed. by K. A. Ross, D. Srivastava,
and D. Papadias. ACM, 2013, pp. 1243–1254. doi: 10.1145/2463676.2463710.

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, 1997. isbn: 0-521-58519-8. doi:
10.1017/cbo9780511574931.

[Hav97] P. Havlak. “Nesting of Reducible and Irreducible Loops.” In: ACM Trans. Program.
Lang. Syst. 19.4 (1997), 557–567. issn: 0164-0925. doi: 10.1145/262004.262005.

[Hof16] T. Hoff. Code Generation: The Inner Sanctum Of Database Performance. 2016. url:
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-
sanctum-of-database-performance.html. (accessed: 20.12.2022).

[Hop71] J. E. Hopcroft. An n Log n Algorithm for Minimizing States in a Finite Automaton.
Tech. rep. Stanford, CA, USA, 1971.

[Iso] Information Technology - Database Language SQL. Standard SQL-92. Massachusetts,
USA: International Organization for Standardization, 1992. https://www.contrib.
andrew.cmu.edu/~shadow/sql/sql1992.txt (accessed: 03.12.2022).

[KLN21] T. Kersten, V. Leis, and T. Neumann. “Tidy Tuples and Flying Start: fast compilation
and fast execution of relational queries in Umbra.” In: VLDB J. 30.5 (2021), pp. 883–
905. doi: 10.1007/s00778-020-00643-4.

[KMP77] D. E. Knuth, J. H. Morris Jr., and V. R. Pratt. “Fast Pattern Matching in Strings.” In:
SIAM J. Comput. 6.2 (1977), pp. 323–350. doi: 10.1137/0206024.

[KN11] A. Kemper and T. Neumann. “HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots.” In: Proceedings of the 27th
International Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany. Ed. by S. Abiteboul, K. Böhm, C. Koch, and K. Tan. IEEE Computer
Society, 2011, pp. 195–206. doi: 10.1109/ICDE.2011.5767867.

71

https://www.databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://www.databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://www.databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/116825.116845
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1145/262004.262005
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
https://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://doi.org/10.1007/s00778-020-00643-4
https://doi.org/10.1137/0206024
https://doi.org/10.1109/ICDE.2011.5767867

Bibliography

[Lan01a] H. W. Lang. Boyer-Moore Algorithm algorithm. 2001. url: https://www.inf.hs-
flensburg . de / lang / algorithmen / pattern / bmen . htm. (updated by author:
04.06.2018, accessed: 06.12.2022).

[Lan01b] H. W. Lang. Knuth-Morris-Pratt Algorithm. 2001. url: https://www.inf.hs-
flensburg . de / lang / algorithmen / pattern / kmpen . htm. (updated by author:
04.06.2018, accessed: 18.11.2022).

[Mic] .NET: Compilation and Reuse in Regular Expressions. 2021. url: https://learn.
microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-
in-regular-expressions. (accessed: 06.01.2023).

[Neu11] T. Neumann. “Efficiently Compiling Efficient Query Plans for Modern Hardware.”
In: Proc. VLDB Endow. 4.9 (2011), pp. 539–550. doi: 10.14778/2002938.2002940.

[NF20] T. Neumann and M. J. Freitag. “Umbra: A Disk-Based System with In-Memory
Performance.” In: 10th Conference on Innovative Data Systems Research, CIDR 2020,
Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org,
2020.

[Per+09] G. Perez, Y. P. Mejia, I. Olmos, J. A. Gonzalez, P. Sánchez, and C. Vázquez. “An
Automaton for Motifs Recognition in DNA Sequences.” In: MICAI 2009: Advances
in Artificial Intelligence, 8th Mexican International Conference on Artificial Intelligence,
Guanajuato, Mexico, November 9-13, 2009. Proceedings. Ed. by A. H. Aguirre, R. M.
Borja, and C. A. R. García. Vol. 5845. Lecture Notes in Computer Science. Springer,
2009, pp. 556–565. doi: 10.1007/978-3-642-05258-3_49.

[Pos] PostgreSQL Development Team. PostgreSQL Documentation - Pattern Matching.
url: https://www.postgresql.org/docs/current/functions-matching.html.
(accessed: 18.11.2022).

[Ryt80] W. Rytter. “A Correct Preprocessing Algorithm for Boyer-Moore String-Searching.”
In: SIAM J. Comput. 9.3 (1980), pp. 509–512. doi: 10.1137/0209037.

[Tho68] K. Thompson. “Regular Expression Search Algorithm.” In: Commun. ACM 11.6
(1968), pp. 419–422. doi: 10.1145/363347.363387.

[Vog+18] A. Vogelsgesang, M. Haubenschild, J. Finis, A. Kemper, V. Leis, T. Mühlbauer,
T. Neumann, and M. Then. “Get Real: How Benchmarks Fail to Represent the
Real World.” In: Proceedings of the 7th International Workshop on Testing Database
Systems, DBTest@SIGMOD 2018, Houston, TX, USA, June 15, 2018. Ed. by A. Böhm
and T. Rabl. ACM, 2018, 1:1–1:6. doi: 10.1145/3209950.3209952.

[WL14] S. Wanderman-Milne and N. Li. “Runtime Code Generation in Cloudera Impala.”
In: IEEE Data Eng. Bull. 37.1 (2014), pp. 31–37.

72

https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/bmen.htm
https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/bmen.htm
https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/kmpen.htm
https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/kmpen.htm
https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1007/978-3-642-05258-3_49
https://www.postgresql.org/docs/current/functions-matching.html
https://doi.org/10.1137/0209037
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/3209950.3209952

	Acknowledgments
	Abstract
	Kurzfassung
	Introduction
	Motivation
	State of the Art
	Structure

	Exact String Pattern Matching
	LIKE Patterns in SQL
	Knuth-Morris-Pratt Algorithm
	Preprocessing
	Original KMP
	KMP with One Loop
	Optimizations
	Early Return
	Compression of the LPS Table
	Blockwise Processing

	Boyer-Moore Algorithm
	Preprocessing
	Bad Character Heuristics
	Good Suffix Heuristics

	Original BM
	Fast BM
	Blockwise BM

	Automaton Approach
	Non-Deterministic Finite Automaton for LIKE patterns
	Deterministic Finite Automaton for LIKE patterns

	Code Generation for Exact String Pattern Matching
	Code Generation Framework in Umbra
	Knuth-Morris-Pratt Algorithm
	Original KMP
	KMP with One Loop
	Adding Optimizations to Code Generation Process

	Boyer-Moore Algorithm
	Original BM
	Fast BM
	Blockwise BM

	Automaton Approach
	Direct Translation
	Blockwise Translation

	Concatenating Multiple Subpatterns

	Evaluation for Exact String Pattern Matching
	Experimental Setup
	Hardware Specification
	Data and Queries
	TPC-H Data
	ClickBench

	Query Settings

	Results
	Knuth-Morris-Pratt Algorithm
	Regular LPS Table
	Compressed LPS Table

	Boyer-Moore Algorithm
	Automaton Approach
	Comparison of the Code Generating Algorithms
	Compilation Time
	ClickBench Results

	Non-Exact Pattern Matching
	Extended Automaton Approach
	Extended Like-NFA
	Extended Like-DFA

	Reduced Automaton Approach

	Conclusions and Outlook
	Code Generation Independent Insight
	Code Generation Dependent Insight
	Outlook

	Blockwise Processing
	Blockwise Search for ASCII character - Example
	Blockwise Search for Non-ASCII character

	Determinization of Like-NFA
	Distribution of ClickBench Dataset
	List of Figures
	List of Tables
	Listings
	Bibliography

