
Low Latency Query
Planning and Processing

Philipp Fent

1

Hardware gets fast
● Large main memory
● Fast SSDs
● Many core machines

Low latency queries

● Still bound by CPU capabilities
● Algorithmic changes

2

Query processing

● Intra-query parallelism
● Shared state

Query planning

● Cardinality estimation
● Algebra optimization

Algorithmic challenges

3

● Combined execution of compatible join and aggregation
● Q: “Total sales per customer”

Groupjoin – Idea

join = Hashtable()
for c in customer:
 join[c.id] = c

group = Hashtable()
for o in orders:
 if join.contains(o.c_id):
 group[c_id].sum += o.price

groupjoin = Hashtable()
for c in customer:
 groupjoin[c.id] = c

for o in orders:
 if groupjoin.contains(o.c_id):
 groupjoin[c_id].sum += o.price

4

● Shared hash table unsuitable for multithreaded execution
● Four execution strategies for parallel groupjoin:

Groupjoin – Avoiding contention

Separate Eager

Memoizing Index 5

Nested Aggregates
● Common in analytical queries
● HAVING predicates are hard to estimate

select l_orderkey
from lineitem
group by l_orderkey
having sum(l_quantity) > 300

Q: “Large orders”

6

Nested Aggregates
● Common in analytical queries
● HAVING predicates are hard to estimate
● But have significant impact on execution plans

7

Estimating Aggregates
● Numerical columns ∼ 𝐍(µ,σ²)
● Cheap and generalizes nicely, but inherently symmetric

8

Estimating Aggregates
● Using a skew-normal distribution

9

Practical Groupjoins and Nested Aggregates
● Effects ⅛ of queries
● +23% in TPC-H, +6% in TPC-DS

10

Query Optimization with Indexed Algebra
● Complex queries on small workloads

○ BigQuery: 90% of queries processed less than 100 MB of data

○ Tableau Public: 90% of workbooks are less than 100k tuples

● TPC-H
○ Scale 1: 0.8 ms optimization, 20 ms execution

○ Scale 0.01: 0.8 ms optimization, 0.2 ms execution

● Optimization time scales super-linear

with query complexity

TPC-DS Q64 11

● Relational algebra trees
○ Operators
○ Expressions
○ Columns / IUs

● Analyze data-flow for optimization
○ Which path?
○ Modifications?
○ Materialized?

Algebra

12

Optimization
● Reason about the algebra to

derive optimization possibilities

● Top-down, operator at a time
○ Needs O(n²) column sets

● Path-centric
○ Still O(n) length

○ With indexing: O(log n)

13

Indexing Algebra

● Index paths through the algebra

➡ Faster path traversal

● Binary search trees

on path depth

● Paths from root overlap

● Link/cut trees support that

efficiently

14

Indexing Algebra

● Index paths through the algebra

➡ Faster path traversal

● Binary search trees

on path depth

● Paths from root might overlap

● Link/cut trees support that

efficiently

15

Indexed Algebra Performance

● Significant overall improvements

● 10 - 30% faster optimization

● 8% better end-to-end latency in

Tableau Public

16

Query processing

✅ Intra-query parallelism
✅ Shared state

Query planning

✅ Cardinality estimation
✅ Algebra operations

Conclusion

17

