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Hardware gets fast

e Large main memory
e FastSSDs
e Many core machines

Low latency queries

e Still bound by CPU capabilities

e Algorithmic changes

x86 CPU With Most Cores

AMD Genoa
°
64+ o
AMD Rome
AMD Naples
oy 32 P. g
8 Broadwell Skylake
n 16 °
= Westmere Ivy-Bridge
2 °
— 8- ° °
3 Beckton” Sandy Bridge
8 4 ° °
Kentsfield Lynnfield
2 °
Paxville
Foster
14 °
2000 2004 2008 2012 2016 2020
8
990 Pro
‘o
980 Pro /
[ ] /
6
2
[aa)
O /
R /
- 960 Pro 970 Pro
B >——* ® 970 Evo Plus
Q,
195) 950 Pro
SM951
9 o
830 XP.9 A1
470 840 Pro~"850 Pro
HD103S] e e o
« —
2010 2012 2014 2016 2018 2020 2022




Algorithmic challenges
Query processing

e Intra-query parallelism
e Shared state

Query planning

e Cardinality estimation
e Algebra optimization
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Groupjoin — Idea

e Combined execution of compatible join and aggregation
e Q: “Total sales per customer”

join = Hashtable()
r‘ _ . for ¢ in customer:
|C.1d, sum(0.price) join[c.id] = ¢

Dq . . group = Hashtable()
//~\S'1d"0'c—ld for o in orders:

Eusteier Oideis if join.contains(o.c_id):
group[c_id].sum += o.price

groupjoin = Hashtable()
for ¢ in customer:

|X| roupjoin[c.id] = ¢

C.id=0.c_id g P
/ N\ )
C D for o in orders:
if groupjoin.contains(o.c_id):
groupjoin[c_id].sum += o.price



Groupjoin — Avoiding contention

e Shared hash table unsuitable for multithreaded execution
e Four execution strategies for parallel groupjoin:
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Nested Aggregates

e Common in analytical queries
e HAVING predicates are hard to estimate

Q: “Large orders”

select 1l_orderkey

from lineitem

group by 1_orderkey

having sum(l_quantity) > 300



Nested Aggregates

e Common in analytical queries
e HAVING predicates are hard to estimate
e But have significant impact on execution plans
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Estimating Aggregates

e Numerical columns ~ N(u,0?)
e Cheap and generalizes nicely, but inherently symmetric

IMDb movie rating TPC-H customer balance

Density
Density

0 2500 5000 7500 10000

COF
CDF

25 50 75 100 0 2500 5000 7500
71 Observed Data [ Calculated skew-normal fit



Estimating Aggregates

Using a skew-normal distribution
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Practical Groupjoins and Nested Aggregates

e Effects & of queries
e +23% in TPC-H, +6% in TPC-DS
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Query Optimization with Indexed Algebra

e Complex queries on small workloads

o BigQuery: 90% of queries processed less than 100 MB of data

o Tableau Public: 90% of workbooks are less than 100k tuples

e TPC-H

o Scale 1: 0.8 ms optimization, 20 ms execution

o Scale 0.01: 0.8 ms optimization, 0.2 ms execution

e Optimization time scales super-linear

with query complexity

TPC-DS Q64 11



Algebra

e Relational algebra trees
o Operators [)(]
o Expressions A.y=C.y
o Columns/IUs / \\

e Analyze data-flow for optimization [X]A.X:B.x I’ C.y;SUM(C.v)
o Which path? / .
o Modifications? o
o Materialized? A B A.z=C.z

C

12



Optimization

Reason about the algebra to
derive optimization possibilities
Top-down, operator at a time

o Needs O(n?) column sets

Path-centric

o Still O(n) length
o  With indexing: O(log n)

O A.c=42

5 v e,
N e\iﬂ " \? R

(a) Operator-centric

0A.C;42

%y

1k

(b) Path-centric
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Indexing Algebra

e Index paths through the algebra

(\O‘N“ up

= Faster path traversal o /
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Indexing Algebra

e Index paths through the algebra

= Faster path traversal

Rel. Algebra Transformation Traversal

e Binary search trees w/o index o) o(n)
on path depth static index O(n) O(logn)

_ path labeling O(n) 0O(1)
e Paths from root might overlap mm) Indexed Algebra  O(log n) O(logn)

e Link/cut trees support that

efficiently
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Indexed Algebra Performance

e Significant overall improvements

e 10 - 30% faster optimization 15
e 8% better end-to-end latency in %1'6
Tableau Public C%

TPC-H

TPC-DS

——

JOB

Synthetic Joins
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Conclusion
Query processing

Intra-query parallelism
Shared state

Query planning

Y4 Cardinality estimation
"4 Algebra operations
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