Low Latency Query

Planning and Processing
Philipp Fent

Hardware gets fast

e Large main memory
e FastSSDs
e Many core machines

Low latency queries

e Still bound by CPU capabilities

e Algorithmic changes

x86 CPU With Most Cores

AMD Genoa
°
64+ o
AMD Rome
AMD Naples
oy 32 P. g
8 Broadwell Skylake
n 16 °
= Westmere Ivy-Bridge
2 °
— 8- ° °
3 Beckton” Sandy Bridge
8 4 ° °
Kentsfield Lynnfield
2 °
Paxville
Foster
14 °
2000 2004 2008 2012 2016 2020
8
990 Pro
‘o
980 Pro /
[] /
6
2
[aa)
O /
R /
- 960 Pro 970 Pro
B >——* ® 970 Evo Plus
Q,
195) 950 Pro
SM951
9 o
830 XP.9 A1
470 840 Pro~"850 Pro
HD103S] e e o
« —
2010 2012 2014 2016 2018 2020 2022

Algorithmic challenges
Query processing

e Intra-query parallelism
e Shared state

Query planning

e Cardinality estimation
e Algebra optimization

A Practical Approach to Groupjoin and Nested Aggregates

Philipp Fent
Technische Universitit Minchen

ABSTRACT
Groupjons,the conl

@intum.

el exccution of a join and a subseqy

oup by e common i andytcl g e o ot 15

ofthe queries in TPC-H and

invented to improve performane

TPC-DS. While they imally

c.clficient paralel excetionof

s canbe e by conion, il thes et
efcient implementation
only used

ness in a many-core system.

‘Thomas Neumann
Technische Universitt Minchen
neumann@in tum.de.

Pl
T

sqL
Query

Figue 1 Mising ompanents forpracticalgroupjons. Qur
improvements to stimation and paralll execution enabl

iy e by w‘m. faced with computed couns from
which

nested aggregates,
subopimal query plans

s to porcost etimtions and ths,

s pper v st e o ity st

and execute zxoupioins and n

The VLB Journl (2023) 321165-1150
tpsicosrg/10.1007/s00778-022-0765x

SPECIAL ISSUE PAPER

of join and nested aggreg

Practical planning and

Philipp Fent!) Altan Birer' - Thomas Neumann'

Recee
©The Authors 2022

Abstract
Giroupjoins combine execution of a join and & subsequent group-by. They are common in analytical queries and occur in
about s of the querics in TPC-H and TPC-DS. While they were originally invented to improve performance, cflicient

ted aggregates. We propose two.
ety prdict he sl i

 primary reason o use & groupjon, i s performance. We
(p(ndLcs;nmwxldm‘lmhu}d(su s ess memory. and improve

ponsvenes ofthis quey. However, Groupions vt o
more capible than egular group-bys, s we can reate the groups

ling system has g ——
e evauation of groupioins,which
Hes up to3 factor of 2.

P o o G

backbone of query engines. A
serve in many benchmarks |
i jon with grouped sggreg

SUHCs.value)

& we answer the query by bul
the hash join ad

SELECT cust. id, ent, s

Fron custoner cust,
SELECT CONI(+) AS ent, SUM(s.value) as s
RON sales 3
WHERE cust.id © s.c_1d

Asymptotically Better Query Optimization Using Indexed Algebra

‘Thomas Neumann

ipp Fent Guido Moerkotte
Technische Universitit Miinchen

Technische Universitit Minchen Universitat Mannheim

R ,,,,m.,,,...h,mm o]
! o v Thiscon) ABSTRACT My yecy
)
ageregates. For these, the result of aggregation to op Traditional The ncesry s i et s shoudply opisitons m/ r
e gl s m llmmol iy i sadlty y Traitons Mg Tosomen
. roup-by i | N
brkde oo miopheond i | ettt | o el o o A B Oruos
roupjoin execution for scalable execution of groupjoins, index groupjoins, and a greedy eager aggregation optimization Vol 14, Mo, 11 155N 2150-8007. ":'Y R
bt for scalable exccution of groupjoins, index groupjoin, and greedy cager aggregarion opimizat N il s ey (\1
AMbm trees. lmcm we need t wive algebra repre *
estimates ' TPC-H and TPC-DS queries. llvx\lvvnrld/\uﬂml« Anll\sls '
significanly. s papr Fgure 1:Relation Inthis
son pape,
Faywors e oniomlon™ Goncy procstioFactii rmsmsing it ndscd Algebr cralsclicin e wilh 2 ol
- support dynamic.
1 Introduction gae values. This combined excution ofjin and group-by " " S il
iscaleda groupoin 56 Wil g queries se theretieally aebounded G

Joins and aggregations are the backbone of query engines. rimary reason to use a groupjoin is it performance.
A common query pattern, which we abserve in many benct pend less time building hash tables, use less mem-
ks (10591 and ey applictions 7], i Join wilh ory andimprove e responsienee of s guery. Fowener,
srouped aggregation on the same key: joins are also more capable than regular group-bys, as

we can create the group explicily. Consider the following
nested query, with subily different semantics:

SELECT cust.id, COUNT(®), SUM(s.value)
FROM customer cust, sales s
BRE cust.id = s.c_id

i SELECT cust.id, ent, s
GROUP BY cust.id

FROM customer cust,
LECT COUNT(*) AS cnt, SUM(s.value)

In a traditional implementation, we answer the query by
bl e b sl on e e by, e o e bk
join and one for the er, e can speed up this
by etin s o 5l sk e e

WHERE cust.id = s.c_id
GROUP BY cust.id

= MR
fenGm um e
o Horenested the querycaleultes a COUNT,(+) o th nner
i ‘able which evaate 0 zero when thre are nojoin parners.
— Answering that query without nested-loop evalation of the
TN imer query is twicky, a & regular Join plus group-by will

produce wrong results for empy subqueries, which is known
a5 the COUNT bug [58]. A groupjoin directly supports such

Tchaische Universitht Minchn, Garching, Germany

@ spinger

el A o mpreves apnion e o e ol

harmess queres of THC-H and TPC-DS by more FROM A, B, C LEFT OUTER JOIN D ON C.u = D.u

WHERE ALy - 5 AND A.w = B.u AD B.x - C.x
oz

Form
Phiigp oo, Guido oerktte,ad Thomas Newmann, Aymptticlly o
et Query Optmiztion Usingldesed Algbes FYLDE, 16(1) 015

this sl exammple it s sy to see which attibutes o oin
s 02, il canbe e down (), néwich
ot il s Ingenral. e estions e il b
b FROM s e ot by s T tsdons
iy o 15 M psbene o Rer bk o B oy that e
Lo tber st havebeen e saible s availble n each step of the query in a st 9, 10] and to move.
frismren e comstrre

Yo e

1 INTRODUCTION

each join producesat last e colum, the constructon tme for

for large quer

e e ghore the performance problems this myopic ok
cientl.In many cases we want t nspect the fulldata flow nstead
Consider the smal “The top most

ton of the averal runtime. The challenge fo the optimizer here

i hat the data low thecgh the query,and ts analysiscan be -

tonishingly Additonaly,

with complex business logic amplify this problem [3, 15, 19, 37
which

e
47 withan st o gt put €)Wl i daia
such a small example, it s

is especially painful for »
can be more expensive than query execution. Small data sizes are

forex

ample.
e ol e drotetht

The sl
Vion operato on the lowe ight uses an atribte tht i produced
i

] i different part of the operator tee, which effctively makes
i oy (b lopmost pelor ependet o Bl uch o

quires a nested Joop join execution.
“The query aptmizer has o it tesedependent s and con
then et he gy o e e comclion mw.]
e join tree [27], While we can detect these dependent joins by

s e

3018

Groupjoin — Idea

e Combined execution of compatible join and aggregation
e Q: “Total sales per customer”

join = Hashtable()
r‘ _ . for ¢ in customer:
|C.1d, sum(0.price) join[c.id] = ¢

Dq . . group = Hashtable()
//~\S'1d"0'c—ld for o in orders:

Eusteier Oideis if join.contains(o.c_id):
group[c_id].sum += o.price

groupjoin = Hashtable()
for ¢ in customer:

|X| roupjoin[c.id] = ¢

C.id=0.c_id g P
/ N\)
C D for o in orders:
if groupjoin.contains(o.c_id):
groupjoin[c_id].sum += o.price

Groupjoin — Avoiding contention

e Shared hash table unsuitable for multithreaded execution
e Four execution strategies for parallel groupjoin:

I_C.id, sum(0.price) EN A
[><]C.id=0.c_id c I
™ |
Customer Orders 0
Separate Eager
{Thread-local Hashtables | [EEEEEEEE -
Global Hashtable | 67 : N DX
. n={@m | '
‘ Key | T, ' Aggregates ‘ ' ' i \ !
‘Key|T1|Aggregates‘ T2 . | ‘ i
2 Key|T3|Aggregates‘ | 2=1@:m} i C ! , C_ld :
e | |
I rs={} O

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Nested Aggregates

e Common in analytical queries
e HAVING predicates are hard to estimate

Q: “Large orders”

select 1l_orderkey

from lineitem

group by 1_orderkey

having sum(l_quantity) > 300

Nested Aggregates

e Common in analytical queries
e HAVING predicates are hard to estimate
e But have significant impact on execution plans

XU
D(]*/ \ineitem N*/
Yy / Q
. ><] customer customer
selective « - £
s 0' orders [O'
I |

unselective
line1!em lineitem

ineitem

a) Selective O -Predicate b) Unselective O -Predicate

Estimating Aggregates

e Numerical columns ~ N(u,0?)
e Cheap and generalizes nicely, but inherently symmetric

IMDb movie rating TPC-H customer balance

Density
Density

0 2500 5000 7500 10000

COF
CDF

25 50 75 100 0 2500 5000 7500
71 Observed Data [Calculated skew-normal fit

Estimating Aggregates

Using a skew-normal distribution

Density

Density

SUM(X)

Input Data

COUNT (X)

Density

5 10 15
MIN(X) MAX (X)
Z
n
S
)
A
0 3 6 0 & 10

[Base Column X [Group Size [I] Simulated [Calculated Estimate

Practical Groupjoins and Nested Aggregates

e Effects & of queries
e +23% in TPC-H, +6% in TPC-DS

TPC-H TPC-DS

T

O

+

wn

&

& 15

S}

(D)

(D]

ot

wn

] sk | --. -IIQG Q6I l-‘“_

Q03 QI3 Q17 QI8 Q()l QUG Q23a Q23b Q30 Q32 Q41 Q48 Q54 Q? Q79 Q81 s Q92

< slower

10

Query Optimization with Indexed Algebra

e Complex queries on small workloads

o BigQuery: 90% of queries processed less than 100 MB of data

o Tableau Public: 90% of workbooks are less than 100k tuples

e TPC-H

o Scale 1: 0.8 ms optimization, 20 ms execution

o Scale 0.01: 0.8 ms optimization, 0.2 ms execution

e Optimization time scales super-linear

with query complexity

TPC-DS Q64 11

Algebra

e Relational algebra trees
o Operators [)(]
o Expressions A.y=C.y
o Columns/IUs / \\

e Analyze data-flow for optimization [X]A.X:B.x I’ C.y;SUM(C.v)
o Which path? / .
o Modifications? o
o Materialized? A B A.z=C.z

C

12

Optimization

Reason about the algebra to
derive optimization possibilities
Top-down, operator at a time

o Needs O(n?) column sets

Path-centric

o Still O(n) length
o With indexing: O(log n)

O A.c=42

5 v e,
N e\iﬂ " \? R

(a) Operator-centric

0A.C;42

%y

1k

(b) Path-centric

13

Indexing Algebra

e Index paths through the algebra

(\O‘N“ up

= Faster path traversal o /

Xl 1'\5 / \ Xl

_ i 4 — Oy y S
e Binary search trees /m2 “~ B g% (<2 a°
b3 3 (b) Balanced binary index of
on path depth A a o4 a 4 the path from B to the root
g
I | 3

e Paths from root overlap i DS F4/>4 \xl

e Link/cut trees support that B &5 4

(a) Represented algebra plan

efﬁciently (c) Index from D° to the root

14

Indexing Algebra

e Index paths through the algebra

= Faster path traversal

Rel. Algebra Transformation Traversal

e Binary search trees w/o index o) o(n)
on path depth static index O(n) O(logn)

_ path labeling O(n) 0O(1)
e Paths from root might overlap mm) Indexed Algebra O(log n) O(logn)

e Link/cut trees support that

efficiently

15

Indexed Algebra Performance

e Significant overall improvements

e 10 - 30% faster optimization 15
e 8% better end-to-end latency in %1'6
Tableau Public C%

TPC-H

TPC-DS

——

JOB

Synthetic Joins

16

Conclusion
Query processing

Intra-query parallelism
Shared state

Query planning

Y4 Cardinality estimation
"4 Algebra operations

A Practical Approach to Groupjoin and Nested Aggregates

‘Thomas Neumann

Philipp Fent
fent@in tumde
ABSTRACT
Groppins, the combined o of i and 3 s
o by. s common iyl quri. mmmmm“

o s e

ovented o improve performance. ficic

and TPC-DS. Whilethey were oriinally
ik parall excction of

s canbe e by conion, il thes et

1 an effcient implementation
nly used

ot m;uhlg}nlvdcslubk .sm pioinsare ot only s

up by an duce
mypm,y. o Ahe q..,,v ophrmze! o void st

byt ansing
fops

e query opinizr e be

e o U o AR gt s

neumann@in tum.de.

sqL —~— e
Query

Figue 1 Mising ompanents forpracticalgroupjons. Qur
provementsto estimation and parallel sxecution enable

e it corect

ey s e s whe e wih omputed s o
which leads o poor cost stimations and thus,

nested ageregats

Sobapimlguery

s pper v st e o ity st
and execute axoupioins and nested aggregates. We propose two

The VLB Journl (2023) 321165-1150
tpsicosrg/10.1007/s00778-022-0765x

'SPECIAL ISSUE PAPER

o

Practical planning and ion of join and nested

Philipp Fent!) Altan Birer' - Thomas Neumann'

Recee
© The Authors) 2022

Abstract
Giroupjoins combine execution of a join and & subsequent group-by. They are common in analytical queries and occur in
about 1 of the querics in TPC-H and TPC-DS. While they were originlly invented to improve. pclfum\um:c cﬁmcm

ageregates. For these the g the resull of ageregation 0 opi Tradiional

e et rmks e

ary e o e rovpn s s performance We
spu.a L5 e b o s s s oy, nd mprove
e esponsivencss of this query. However roupjoms s 50

more capible than egular group-bys, s we can reate the groups

g system hassguiicanly bet-
evaluation of groupioins, which
Hes up to3 factor of 2.

APl syt roagon
) 2 9.

backbone of query engines. A
serve in many benchmarks |
i jon with grouped sggreg

SUHCs.value)

s a0, o, o
seLecr (num(») 5 cnt, s vatae s 5
FRON sales 5
WERE cust 14 - s.c.1d

A ically Better Query Opt Using Indexed Algebra

Guido Moerkotte ‘Thomas Neumann
Universitat Masmhes

hilipp Fent
Technische Universitt Minchen

et
o e i s 4
e s ey e
e aggregate values. This com] ABSTRACT Wy gy
i) s X
Tt ncestoy anlyas,f e canand shl apy optimions & i
Traditional Ax=Bx | CySUM(C.v)

selectivity

4 |

barrier Inthi i
agaregates. We propose four novel cgate estimates to predict
groupjoin execution for scalable execution of groupjoins, index groupjoins, and ercedy eager agregarion optimization

TPC-H and TPC-DS queries.

significantly

Keywords Query optimization - Query processing - Parallcl processing

1 Introduction gate values. This com

s called a groupjoin (6]

Joins and aggregations are the backbone of query engines. The primary reason 1o use a groupjoin i ts performance.
attern, which we observe in many We spend less time building hash tables, use less mem-

ks 1059 nd indusiry applcaion [7], 1 o wils ory, nd imprne e rosponivenessof s query. Howerer,

ned execution of join and group-by.

we can create the groups explictl. Consider the following

SELECT cust.id, COUNT(), SuM(s.value) ot CL R IE Y e

FROM customer cust, sales s
BRE cust.id = s.c_id

MRS cu SELECT cust.id, cnt, &
GROUP BY cust.id

FROH custoner cust,
LECT COUNT(*) AS cnt, SUM(s.value)

In & traditional implementation, we answer the query by
bl e b sl on e e by, e o e bk 8 s
join and one for the group- ver, we can speed up this FROM sales s
i o i e e s g 6

GROUP BY cust.id
5 Philgp Fent !
fen@in m de

Here,nested the query calculates a COUNT () overtheinner

table, which evaluates 10 zero when there are no join partners.
Answering that query without nested-loop evaluation of the
inner query is tricky, as a regular join plus group-by will
produce wrong results for empy subqueries, which is known
a5 the COUNT bug [58]. A groupjoin directly supports such

At

anbilr e
Thomas Neumar

Deumann@in um de

Tchaische Universitht Minchn, Garching, Germany

@ spinger

ol 0o 1 s

o whic dos s o ol of . B o e
iy T el et e s A B
o o il s o ey
i s, e, we B
ety s o o

Aa=Caz

s s igure 1 Rettion ot
v
e
o i
e
r .| elow.
e e e

Indsed Al improves et e of e el

ewgcr +
s gueisof TRCH and TPC-DS by more i FRON A, B, C LEFT OUTER J0IN D ON C.0 = O.u

WHERE ALy - 5 AND A.w = B.u AD B.x - C.x
WD Cy =70z s

o this sl example it i ey t sce which atiribotes orm join
edges .,), which s can e pshed down (.), and which
ot il s Ingenral. e estions e il b

PVLDB Refer
Fhlip fent. utdo Mokt and Thoms Newmunn, Asympttcal
e Qury Optin Usin ndesed Al PVLDR 161 015

ok 4TI G611 11505

e FROM clue can contin abitary subgueries, The traditional
VDD At it s e e ok et g it

o ther afacts have been e vsible st available in each step of the query in a et [9, 10] and to mose
frismren e comstrre predicates around sep by tep,checking the availble olumns i

1 INTRODUCTION

each join producesat last e colum, the constructon tme for

ime. The chalenge fo the optmizer here or large quer
e i e e ghore the performance problems this myopic ok

ton of the overall
it e dt o hrughhe e, e canbe -

tonishingly Additionally, at
e e o sy e i o B e e e v e o
Cons op
i capeciallypanfl for s
e al d: (A {(C.y). While this data
whers for e
= I tables and the- 1d note that
s The sl
b2 Vi perato o he lower gh ses n it tht & procced
T o iy et o o it e whlh SRSt s
1;:;;;;;*""“ S A LTI ot oestion s dpenden o, i s ot
TR T e i e i lop s e
e e Suer opimivr has o e hese ependent e and on

b
then ewnitethe query 1o remove the coneltion between pats of
e join tree [27]. While we can detect these dependent ois by

3018

17

