
467

Concepts of C++ Programming
Lecture 13: I/O and Testing

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25

468

Systems Programming in C++

▶ So far: mostly covered standard C++

▶ Standard does not contain everything required for OS interaction
▶ Efficient file I/O
▶ Networking
▶ Direct memory allocation from the OS
▶ . . .

▶ Such operations need a different interface to the OS

469

POSIX and Linux API

▶ POSIX: Standard defining C-API (⇝ usable in C++) for OS interaction
▶ Supported on most Unix-like operating systems
▶ Defines several data types, functions, and constants (macros)

e.g. in unistd.h, fcntl.h, sys/*.h

▶ Linux defines additional types, functions, and constants

▶ Documented in man pages, usually sections 2 and 3

470

File Descriptors

▶ File descriptor: handle to resource managed by OS
▶ Files/directories in filesystem
▶ Network sockets
▶ Many other kernel objects

▶ Usually created by a function (e.g. open) and closed by close

▶ In C++, the RAII pattern can be very useful

471

Opening and Creating Files

▶ int open(const char* path, int flags, mode_t mode)
▶ Argument mode is optional, only required when file is created

▶ Open file at path and return fd for that file, or -1 on error

▶ Flags is a bitwise combination of flags and must contain exactly one of:
▶ O_RDONLY, O_RDWR, O_WRONLY

▶ Flag O_CREAT: create file if it doesn’t exist
▶ Flags O_CREAT|O_EXCL: create file if it doesn’t exist, error if it does exist
▶ Flag O_TRUNC: if file exists, truncate it (remove all content)

472

open Example

#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
int main() {

int fd = open("/tmp/testfile", O_WRONLY | O_CREAT, 0600);
if (fd < 0) {

perror("/tmp/testfile");
return 1;

}
close(fd);

}

473

Reading/Writing Files

▶ ssize_t read(int fd, void* buf, size_t count)
▶ ssize_t write(int fd, const void* buf, size_t count)
▶ Read/write up to count bytes to/from buf

▶ Can always read/write less than count
▶ Returns number of bytes read/written, -1 indicates error
▶ read return value 0: reached end of file

▶ Functions might block until data can be read/written
⇝ Might lead to deadlocks!

474

Error Handling

▶ Most functions use errno (<cerrno>154) for error handling
▶ errno: thread-local global variable containing an error code

▶ If a function return -1, errno is set to the error code
▶ EINVAL: invalid argument
▶ ENOENT: no such file or directory
▶ EACCESS: permission denied
▶ . . . (see man 3 errno)

▶ Error message can be retrieved using std::strerror() from <cstring>

154https://en.cppreference.com/w/cpp/header/cerrno

https://en.cppreference.com/w/cpp/header/cerrno

475

File Positions and Seeking
▶ For every file descriptor: kernel remembers position in file
▶ read/write start at and advance that position

▶ off_t lseek(int fd, off_t offset, int whence)
get and/or set current position

▶ whence == SEEK_SET: set current position to offset
▶ whence == SEEK_CUR: add offset to current position
▶ whence == SEEK_END: set current position to end of file plus offset
▶ Return value: new position in file, or -1 to indicate an error

int fd = open("/etc/passwd", O_RDWR);
auto fileSize = lseek(fd, 0, SEEK_END); // move to end of file
lseek(fd, -4, SEEK_CUR); // move 4 bytes backwards
write(fd, "test", 4); // overwrite the last 4 bytes

476

Reading and Writing at Specific Offset

▶ Current offset into file is shared between all threads
▶ Problematic when reading/writing in parallel

▶ ssize_t pread(int fd, void* buf, size_t count, off_t off)
▶ ssize_t pwrite(int fd, const void* buf, size_t count, off_t

off)
▶ Read/write ad specified offset, don’t modify current position

▶ int ftruncate(int fd, off_t length)
▶ Set size of file, if larger than previous size fill with zero bytes

477

Metadata of Files

▶ int stat(const char* path, struct stat* statbuf)
▶ int fstat(int fd, struct stat* statbuf)

▶ <sys/types.h>, <sys/stat.h>, <unistd.h>
▶ Write metadata of specified path into statbuf

▶ st_mode: File type and mode (e.g., permissions)
▶ st_uid: user id of the file owner
▶ st_size: size of the file
▶ st_mtime: timestamp of last modification
▶ . . .

478

UNIX File Types

▶ Regular files
▶ Directories
▶ Symbolic links (often implicitly followed)
▶ Pipes
▶ Character devices (e.g., terminal, /dev/urandom)
▶ Block devices (e.g., disks)
▶ Sockets

▶ st_size shows actual size only for regular files and block devices

479

Checking for Non-Existing Files

△ Quiz: What is NOT problematic about this code?

// Includes <err.h> <fcntl.h> <sys/stat.h>
struct stat statbuf;
if (stat(argv[1], &statbuf) < 0)

err(1, "%s", argv[1]);
if (!S_ISREG(statbuf.st_mode))

errx(1, "%s:␣Not␣a␣regular␣file", argv[1]);
int fd = open(argv[1], O_RDONLY); // No need to check error, file exists

A. Process might not have permission to open/read the file
B. stat doesn’t follow symbolic links, but open does
C. stat might refer to a different file than open
D. open might return EINTR, where the function should be restarted

480

C++ Streams155

▶ C++ library for I/O designed arount the concepts of streams
▶ std::istream: base class for input operations (operator>>)
▶ std::ostream: base class for output operations (operator<<)
▶ std::iostream: subclass of std::istream and std::ostream
▶ std::cin/std::cout: streams for standard input/output

▶ Like std::string, actually templates parameterized for char

155https://en.cppreference.com/w/cpp/io

https://en.cppreference.com/w/cpp/io

481

Input and Output Streams

▶ operator>>(): read value of given type, skip leading whitespace
▶ operator<<(): write value of given type

▶ Both operators can be overloaded for own types as second argument
▶ get()/put(): read/write single character
▶ read()/write(): read/write multiple characters

// Defined by the standard library:
std::istream& operator>>(std::istream&, int&);
int value;
std::cin >> value;

// Write 1024 chars to cout:
std::vector<char> buffer(1024);
std::cout.write(buffer.data(), 1024);

482

Common Operations

▶ Various methods to check whether stream is in specific error state
▶ good(): no error occurred
▶ fail(): an error occurred
▶ bad(): a non-recoverable error occurred
▶ eof(): reached end-of-file
▶ operator bool(): true if stream has no errors

int value;
if (std::cin >> value) {

std::cout << "value␣=␣" << value << std::endl;
} else {

std::cout << "error" << std::endl;
}

483

std::endl

△ Quiz: Which statement is correct?

A. std::cout << std::endl is equivalent to std::endl(std::cout).
B. std::cout << std::endl is equivalent to std::cout << ’\n’.
C. std::endl is an object type and operator<< has a special overload.
D. std::endl is more efficient than writing a new line character.

▶ Flushing an output stream is often not necessary
▶ Prefer writing newline characters instead

484

File Streams
▶ std::ifstream: file stream to read file
▶ std::ofstream: file stream to write file
▶ std::fstream: file stream to read an write file

std::ifstream input("input_file");
if (!input) { std::cout << "couldn’t␣open␣input_file\n"; }
std::ofstream output("output_file");
if (!output) { std::cout << "couldn’t␣open␣output_file\n"; }
// Read an int from input_file and write it to output_file
int value = -1;
if (!(input >> value)) {

std::cout << "couldn’t␣read␣from␣file\n";
}
if (!(output << value)) {

std::cout << "couldn’t␣write␣to␣file\n";
}

485

Reading a File Into Memory

std::string readFile(const char* path) {
auto stream = std::ifstream(path, std::ios::in);
stream.seekg(0, std::ios::end);
auto size = stream.tellg();
stream.seekg(0, std::ios::beg);
std::vector<char> data(size);
stream.read(&data[0], size);
return std::string(&data[0], size);

}

▶ This is not how to do it

486

Disadvantages of Streams

▶ Streams make heavy use of virtual functions and virtual inheritance
▶ System’s locale settings are respected ⇝ slower

▶ E.g., whether dot or comma is used for floating-point numbers
▶ Especially handling of numbers is very inefficient

▶ Streams have implicit state (e.g., formatting specifiers, error status)
▶ Many important operations (e.g. stat) are not exposed,

no way of accessing the underlying file descriptor

⇒ Avoid using C++ streams, better use OS-specific functions

487

I/O Performance and Buffering

▶ I/O operations are often slow (e.g., hard disk, network, etc.)
⇒ Kernel doesn’t immediately write file to disk
▶ Instead, writing data is often delayed for some time
▶ Buffers flushed on close or fsync

▶ System calls are somewhat slow (context switch, etc.)
⇒ Standard library doesn’t immediately calls kernel
▶ Instead, data is buffered in user-space for some time
▶ Buffers flushed on close, exit, or flush

▶ Techniques for more efficient I/O: mmap, io_uring, . . .
all of these are somewhat-to-very OS-specific and non-portable.

488

close

△ Quiz: What can happen when the error of close() is ignored?

A. Silent data loss.
B. File descriptor leak.
C. Nothing, close cannot return an error.

489

std::filesystem156

▶ C++17 addition, provides interface for working with paths and files
▶ Provides abstractions for several POSIX functions

▶ But: not all, and often doesn’t expose the required interface
▶ std::filesystem::path is useful for working with file paths

▶ Convenience functions for concatenating, adding suffixes, etc.

▶ Cannot provide the same guarantees as OS-defined functions

156https://en.cppreference.com/w/cpp/filesystem

https://en.cppreference.com/w/cpp/filesystem

490

Testing

Tests should be an integral part of every larger project
▶ Unit tests
▶ Integration tests
▶ . . .

Good test coverage greatly facilitates implementing a large project
▶ Tests can ensure (to some extent) that modifications do not break existing

functionality
▶ Can easily refactor code
▶ Can easily change the internals of a component
▶ . . .

491

Googletest (1)

▶ Works on a large variety of platforms
▶ Contains a large set of useful functions
▶ Can usually be installed through a package manager
▶ Can be added to a CMake project through the FindGTest.cmake module

Functionality overview
▶ Test cases
▶ Predefined and user-defined assertions
▶ Death tests
▶ . . .

492

Googletest (2)

Simple tests

#include <gtest/gtest.h>
TEST(TestSuiteName, TestName) {

...
}

▶ Defines and names a test function that belongs to a test suite
▶ Test suites can for example map to one class or function
▶ Googletest assertions can be used to control the outcome of the test

function
▶ If any assertion fails or the test function crashes, the entire test case fails

493

Googletest (3)
Fatal assertions
▶ Fatal assertions are prefixed with ASSERT_
▶ When a fatal assertion fails the test function is immediately terminated

Non-fatal assertions
▶ Non-fatal assertions are prefixed with EXPECT_
▶ When a non-fatal assertion fails the test function is allowed to continue
▶ Nevertheless the test case will fail
▶ All assertions exist in fatal and non-fatal versions

Assertion examples
▶ ASSERT_TRUE(condition); or ASSERT_FALSE(condition);
▶ ASSERT_EQ(val1, val2); or ASSERT_NE(val1, val2);
▶ . . .

494

Googletest (4)

A custom main function needs to be provided for Googletest

#include <gtest/gtest.h>
int main(int argc, char** argv) {

::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

▶ Should usually be placed in a separate Tester.cpp or main.cpp

495

Example: Average of Two Integers

▶ Compute the average of two integers, round toward the first

(see script)

157https://research.google/blog/extra-extra-read-all-about-it-nearly-all-binary-searches-and-mergesorts-are-broken/

https://research.google/blog/extra-extra-read-all-about-it-nearly-all-binary-searches-and-mergesorts-are-broken/

496

Coverage (1)

Code coverage can help ensure proper testing of a project
▶ Simple metrics like line coverage have to be interpreted carefully
▶ Can indicate that a certain part of a project has not been tested properly
▶ Can usually not indicate that a certain part of a project has been tested

exhaustively
Line coverage information can automatically be collected during test execution
▶ Possible with a variety of tools
▶ GCC contains the built-in coverage tool gcov
▶ Clang can produce gcov-like output
▶ lcov together with genhtml can be used to generate HTML line coverage

reports from information collected during test execution

497

Coverage (2)
Brief example

build executable with gcov enabled
> g++ -fprofile-arcs -ftest-coverage -o main main.cpp

run executable and generate coverage data
> ./main

generate lcov report
> lcov -c --directory . --output-file coverage.info --ignore-errors mismatch

generate html report
> genhtml coverage.info --output-directory coverage

▶ Produces HTML coverage report in coverage/index.html
▶ Configuration for coverage reports should be part of CMake configuration

498

Integration Tests

▶ Writing fine-granular unit tests can be quite tedious
▶ High overhead when refactoring code: need to adjust all tests

▶ In practice: unit tests complemented with integration tests
▶ For example: test I/O behavior of the entire program

499

FileCheck158 Tests
▶ FileCheck: utility from LLVM to verify output against expectation

// llvm-project/clang/test/Lexer/counter.c
// RUN: %clang -E %s | FileCheck %s

#define PASTE2(x,y) x##y
#define PASTE1(x,y) PASTE2(x,y)
#define UNIQUE(x) PASTE1(x,__COUNTER__)

A: __COUNTER__
B: UNIQUE(foo);
C: UNIQUE(foo);
D: __COUNTER__
// CHECK: A: 0
// CHECK: B: foo1;
// CHECK: C: foo2;
// CHECK: D: 3
158https://llvm.org/docs/CommandGuide/FileCheck.html

https://llvm.org/docs/CommandGuide/FileCheck.html

500

Auto-Generating Tests

▶ Sometimes, expected output of tests can change
▶ Sometimes, this is due to unrelated changes

▶ E.g., when adding an optimization to a compiler, the output of other tests
changes

▶ Adjusting all tests manually is a huge effort
▶ Having a tool to auto-generate the expected output reduces this

▶ Only need to review code changes in git diff

501

I/O and Testing – Summary

▶ POSIX provides a somewhat portable and rather low-level operating system
interface
for interacting with the file system

▶ File I/O in POSIX centered around file descriptors
▶ C++ I/O designed around streams as a higher-level abstraction
▶ C++ streams are inefficient and limited in features
▶ C++ Filesystem API provides good abstraction for paths
▶ Unit tests and integration tests are important for quality

502

I/O and Testing – Questions

▶ When do read/write return? What does a return value 0 imply?
▶ What types of errors can occur during close()?
▶ How to reliably get the size of a file for reading it into memory?
▶ What is the difference between bad() and fail() on streams?
▶ What are disadvantages of streams over using OS-specific functions directly?
▶ How to get code coverage information from unit tests? What does this

mean?
▶ What are benefits of integration tests over unit tests?

	I/O and Testing
	File I/O – POSIX
	C++ Streams
	C++ Filesystem Library
	Testing

