
Unnesting Arbitrary Queries

Thomas Neumann and Alfons Kemper

Technische Universität München

March 5, 2015

Motivation

Often queries are simpler to formulate using subqueries

Q1: select s.name,e.course

from students s,exams e

where s.id=e.sid and

e.grade=(select min(e2.grade)

from exams e2

where s.id=e2.sid)

• here, subquery depends on outer query (correlated)

• nested loop evaluation, O(n2)

• easy to formulate, very inefficient to execute!

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 2 / 21

Motivation (2)

Same query without correlated subquery:

Q1’: select s.name,e.course

from students s,exams e,

(select e2.sid as id, min(e2.grade) as best

from exams e2

group by e2.sid) m

where s.id=e.sid and m.id=s.id and

e.grade=m.best

• much more efficient to execute, no longer O(n2)

• but not as intuitive as the original query

• a database should unnest (i.e., de-correlate) automatically

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 3 / 21

Motivation (3)
Typically, DBMSs detect and unnest some simple cases. But correlations
can be complex:

Q2:

select s.name, e.course

from students s, exams e

where s.id=e.sid and

(s.major = ’CS’ or s.major = ’Games Eng’) and

e.grade>=(select avg(e2.grade)+1

from exams e2

where s.id=e2.sid or

(e2.curriculum=s.major and

s.year>e2.date))

• “difficult” (non-equality, disjunction, etc.)
• we are not aware of any system that could unnest that
• but O(n2) is a deal breaker, a DBMS must avoid that if possible

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 4 / 21

Motivation (4)

SQL promised declarative queries

• the user writes what he wants, not what the system should do

• the DBMS finds a good (the best?) evaluation strategy

• failing to unnest queries often leads to catastrophic runtime

We want an generic approach that can handle arbitrary queries

• works on the algebra, on on the SQL representation

• can handle all relational operators

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 5 / 21

Extended Relational Algebra

We need some extra functionality

χa:f (e) := {x ◦ (a : f (x))|x ∈ e}
T1 pT2 := σp(T1 T2)

T1 pT2 := {t1 ◦ t2|t1 ∈ T1 ∧ t2 ∈ T2(t1) ∧ p(t1 ◦ t2)}
ΓA;a:f (e) := {x ◦ (a : f (y))|x ∈ ΠA(e) ∧ y = {z |z ∈ e ∧ ∀a ∈ A : x .a = z .a}}

Additional notation:

A(T) := the attributes produced by T

F(T) := the free variables of T

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 6 / 21

Unnesting

Canonical translation turns correlated subqueries into

(outer query) p(subquery).

• is a dependent join (evaluates right hand side for every tuple)

• nested loop evaluation, very expensive

The goal of unnesting is to eliminate all dependent joins.

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 7 / 21

Simple Unnesting
Some cases are simple

select ...

from lineitem l1 ...

where exists (select *

from lineitem l2

where l2.l_orderkey = l1.l_orderkey)

...

This results in an algebra expression of the form

l1 (σl1.okey=l2.okey (l2))

We can unnest by pulling the predicate up, eliminating the dependency.

l1 l1.okey=l2.okey (l2)

• pull predicates up to eliminate correlations

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 8 / 21

General Unnesting

General idea: Evaluate subquery for all possible bindings simultaneously.

T1 pT2 ≡ T1 p∧T1=A(D)D(D T2)

where D := ΠF(T2)∩A(T1)(T1).

• D provides all possible bindings of free variables

• |D| ≤ |T1|
• D is a set (i.e., duplicate free)

• D being a set allow for equivalence that do not hold in general

• allows us to move D until subquery no longer dependent

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 9 / 21

General Unnesting (2)

σe.grade=m

s.id=e.sid

students sexams e

Γ∅;m:min(e2.grade)

σs.id=e2.sid

exams e2

⇒

σe.grade=m

s.id=d .id

s.id=e.sid

students sexams e

Πd .id :s.id Γ∅;m:min(e2.grade)

σd .id=e2.sid

exams e2

Using D might already improve runtime sometimes, but in general is only
the first step for full unnesting.

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 10 / 21

General Unnesting (3)

A dependent join with a set D can be manipulated much more easily. We
push D down until the join is no longer dependent:

D T ≡ D T if F(T) ∩ A(D) = ∅.

Push down rules very between operators:

D σp(T2) ≡ σp(D T2)

D (T1 pT2) ≡


(D T1) pT2 : F(T2) ∩ A(D) = ∅
T1 p(D T2) : F(T1) ∩ A(D) = ∅
(D T1) p∧natural D(D T2) : otherwise.

D (T1 pT2) ≡ (D T1) p∧natural D(D T2)

D (ΓA;a:f (T)) ≡ ΓA∪A(D);a:f (D T)

... (see the paper)

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 11 / 21

Examples

σe.grade=m

s.id=e.sid

students sexams e

Γ∅;m:min(e2.grade)

σs.id=e2.sid

exams e2

Original Query 1

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 12 / 21

Examples (2)

σe.grade=m

s.id=d .id

s.id=e.sid

students sexams e

Πd .id :s.id Γ∅;m:min(e2.grade)

σd .id=e2.sid

exams e2

Query 1, Transformation Step 1

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 13 / 21

Examples (3)

σe.grade=m

s.id=d .id

s.id=e.sid

students sexams e

Γd .id ;m:min(e2.grade)

Πd .id :s.idσd .id=e2.sid

exams e2

Query 1, Transformation Step 2

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 14 / 21

Examples (4)

σe.grade=m

s.id=d .id

s.id=e.sid

students sexams e

Γd .id ;m:min(e2.grade)

σd .id=e2.sid

Πd .id :s.id exams e2

Query 1, Transformation Step 3

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 15 / 21

Examples (5)

σe.grade=m

s.id=d .id

s.id=e.sid

students sexams e

Γd .id ;m:min(e2.grade)

σd .id=e2.sid

Πd .id :s.id exams e2

Query 1, Transformation Step 4

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 16 / 21

Examples (6)

σe.grade=m

s.id=d .id

s.id=e.sid

students sexams e

Γd .id ;m:min(e2.grade)

d .id=e2.sid

Πd .id :s.id exams e2

Query 1, Transformation Step 5 (pushing selections back down)

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 17 / 21

Optimizations

Instead of joining with D, we can often infer the attributes from D

D T ⊆ χA(D):B(T) if ∃B ⊆ A(T) : A(D) ≡C B.

• “perfect” unnesting, totally independent query parts afterwards

• but: this computes a superset of the join with D

• does not matter for correctness (final join will eliminate non-D
values), but for performance

• we avoid computing D, but we potential lose pruning power

• a good idea if the join is unselective, otherwise keep D

• cost-base decision

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 18 / 21

Optimizations (2)

σe.grade=m

s.id=d .id

s.id=e.sid

students sexams e

Γd .id ;m:min(e2.grade)

σd .id=e2.sid

χd .id :e2.sid

exams e2

Query 1, Optional Transformation Step 6 (decoupling both sides)

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 19 / 21

Evaluation

• unnesting transforms an O(n2) into an (ideally) O(n) operation

• arbitrary gains possible

Toy database, 1,000 students, 10,000 exams (i7-3930K)
Q1 Q2

HyPer < 1ms 42ms
HyPer without unnesting 51ms 408ms

PostgreSQL 9.1 1,300ms 12,099ms
SQL Sever 2014 can unnest cannot unnest

We cannot publish absolute runtime for SQL Server 2014, but you can guess from the asymptotics.

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 20 / 21

Conclusion

Unnesting is essential for good performance

• improves the asymptotics

• can lead to arbitrary gains

We present a generic approach for unnesting

• works on the algebra level, not on the SQL

• exploit set semantics, push down until no longer dependent

• can handle arbitrary queries

• virtually always beneficial, worst case memory overhead factor 2

• could often completely eliminate overhead, but that is a trade off

Thomas Neumann and Alfons Kemper Unnesting Arbitrary Queries 21 / 21

