
534 / 592

Physical Properties

5. Physical Properties

• Why Properties

• Distributed Queries

• Ordering

• Grouping

• DAGs



535 / 592

Physical Properties Why Properties

Why Properties

• query optimizer chooses the cheapest equivalent plan

• join ordering: the cheapest plan with the same set of relations

• but: plans might produce the same result but behave differently

• for example sort-merge vs. hash join

• hash join could be cheaper, but sort-merge still pay of later

• not directly comparable



536 / 592

Physical Properties Why Properties

Why Properties (2)

How to handle logical equivalent but un-comparable plans?

• one alternative: encode differences into search space

• for example, different plans for sorting vs. hashing

• but: search space explodes

• some aspects like ”sorting” consist of many alternatives

• further: if sorting is cheaper than hashing, we usually prefer sorting

• direct encoding into search space too wasteful

• use (physical) properties instead



537 / 592

Physical Properties Why Properties

Using Properties

A physical property P defines a partial relation ≤P with the following
characteristics among plans:

If two plans p1 and p2 are logically equivalent,

• p1 ≤P p2 if p2 dominates p1 concerning P

• p1 =P p2 is p1 and p2 are comparable concerning P
(p1 ≤P p2 ∧ p2 ≤P p1)

A plan can only be pruned if it is dominated or comparable



538 / 592

Physical Properties Why Properties

Using Properties (2)

With properties, the query optimizer does not maintain a single solution
but a set of solutions for each subproblem:

storeSolution(S ,p)
P = dpTable[S ]
P ′ = ∅
for ∀p′ ∈ P {

if p ≤ p′ ∧ C (p) ≥ C (p′)
return

if ¬(p′ ≤ p ∧ C (p′) ≥ C (p))
P ′ = P ′ ∪ {p′}

}
dpTable[S ] = P ′ ∪ {p}



539 / 592

Physical Properties Why Properties

Using Properties (3)

• algorithm too simple

• properties can be enforced

• Enforcers make plans comparable

• allows for more pruning

• will see examples for this

• combination of multiple properties needs some care



540 / 592

Physical Properties Distributed Queries

Distributed Queries

• distributed query processing keeps track of the site

• intermediate results can be computed at different sites

• a physical property is therefore the site of the intermediate result

• very simple property, site is either the same or different

• more plans comparable with enforcers



541 / 592

Physical Properties Distributed Queries

Distributed Queries - Comparing Plans

Two plans are comparable, if they produce their result on the same site or
the difference is larger than the shipment costs:

prune(p1,p2)
if p1.site = p2.site

return (C (p1) ≤ C (P2))?p1 : p2

if C (p1) + C (transfer p1) ≤ C (P2)
return p1

if C (p2) + C (transfer p2) ≤ C (P1)
return p2

return {p1, p2}



542 / 592

Physical Properties Distributed Queries

Distributed Queries - Effect on Search organization

• previous slide described how to compare plans, but not how to
generate them

• plans must be generated for desired sites

• one possibility: generate plans for all sites

• can be quite wasteful

• alternative: generate plans (for sites) on demand

• difficult to do bottom-up

• usual technique: determine relevant sites beforehand and generate
plans for them

• this sites would be called interesting



543 / 592

Physical Properties Ordering

Ordering

• physical tuple order is the classical physical property

• equivalent plans produce the same tuples, but (potentially) in
different order

• tuple ordering is very important for many operators

• sort-merge, group by etc.

• explicit order by

• access optimization



544 / 592

Physical Properties Ordering

Ordering (2)

An ordering O is a list of attributes (A1, . . . ,An)

A tuple stream satisfied an ordering O, if the tuples are sorted according
to A1 and for each 1 < i ≤ n the tuples are sorted on Ai for identical
values of A1, . . . ,Ai−1.



545 / 592

Physical Properties Ordering

Interesting Orderings

• optimizer uses existing orderings, or creates new ones (enforcers)

• set of potential orderings very large

• too many orderings increase the search space

• concentrate on relevant orderings: interesting orderings

ordering is interesting, if

• requested by the user

• physically available

• useful for a planed operator



546 / 592

Physical Properties Ordering

Interesting Orderings (2)

• ordering is characterized by a list of attributes

• if a tuple stream is ordered on a1, . . . , an, an+1, it is also ordered on
a1, . . . , an

• orderings are affected by operators, in particular they can grow

• therefore, each prefix of an interesting ordering is also interesting

• (somewhat implementation dependent)

• non-interesting orderings are ”forgotten” by the optimizer to reduce
the search space



547 / 592

Physical Properties Ordering

Physical vs. Logical Ordering

• the physical ordering is the actual order of tuples on disk/in a tuple
stream

• the logical ordering is the ordering satisfied by the tuples

• the query optimizer can usually only reason about the logical ordering

• a tuple stream may satisfy multiple logical orderings

• the logical ordering can change, although the physical ordering did
not!



548 / 592

Physical Properties Ordering

Functional Dependencies

Logical Ordering is affected by functional dependencies:

• induces by operators

• σa=cos(b) ⇒ {b → a}
• σa=b ⇒ {a→ b, b → a} (even stronger)

• σa=10 ⇒ {∅ → a}
• complex operators can induce multiple FDs

• FDs allow for deriving new logical orderings



549 / 592

Physical Properties Ordering

Example

select a,b,c

from s a,

(select b:b,c:count(*),d:max(d)

from tablefunc(a) group by b)

order by a,b,c

Interesting ordering: (a), (b), (a, b) and (a, b, c)
Interesting groupings: {b}
Functional dependencies: b → c , b → d

• Note: for {b} grouping is sufficient (next section)



550 / 592

Physical Properties Ordering

Materializing Orderings

• the query optimizer might just maintain a set of all orderings satisfied
by a plan

• but FDs increase the set

• sort(a)→select(a = b)

• is compatible with (a), (a, b), (b), (b, a)

• set can grow exponentially

• maintaining set of orderings not feasible



551 / 592

Physical Properties Ordering

Reducing Orderings

Simmen et al. [10] proposed the following scheme:

• remember the base ordering

• remember all functional dependencies

• whenever testing for an ordering, reduce by base ordering and
functional dependency

• apply prefix test after this



552 / 592

Physical Properties Ordering

Reducing Orderings - Example

Ordering (b, d , e), test for (a, b, c , e), FDs {a→ c , ∅ → a, b → d}

1. reduce ordering to (b, e)

2. reduce test to (a, b, e)

3. reduce test to (b, e)

4. test for prefix

but:

• what would happen if we applied ∅ → a first?

• reductions must be applied back to front



553 / 592

Physical Properties Ordering

Reducing Orderings - Discussion

• back-to-front rule is not enough ((a),(a, b, c),{a→ b, a, b → c})
• avoiding this requires normalizing the FDs, which is very expensive

• reduction has to be done for each test

• tests happen very frequently (nearly each operator tests)

• memory management is a problem

• better than materializing orderings, but not optimal



554 / 592

Physical Properties Ordering

Required Interface for Orderings

Query optimizer just requires few operations:

• initialization

• test for an ordering

• apply function dependency

Concrete ordering not required



555 / 592

Physical Properties Ordering

Encoding Orderings as FSMs

Use an FSM (ordering (a, b, c), FD {b → d})

ǫ

a

b → d

ab

abd

b → d

ǫ

abdc

abcd

b → d

ǫ

abc

ǫ

ǫ



556 / 592

Physical Properties Ordering

Encoding Orderings as FSMs (2)

• FSM described physical orderings

• pretends that FD changes physical ordering

• might be non-deterministic

• has to become deterministic

• conversion in DFSM (via NFA→DFA)



557 / 592

Physical Properties Ordering

Encoding Orderings as FSMs (3)

DFSM

a,ab,abc

b → d a,ab,abc

abd,abcd,
abdc

• node contains all possible physical orderings =⇒ logical orderings

• operating on the DFSM is very efficient

• only problem: how to construct it (efficiently)



558 / 592

Physical Properties Ordering

Ordering FSM Construction - Overview

1. Determine the input

1.1 Determine interesting orders
1.2 Determine sets of functional dependencies

2. Construct the NFSM

2.1 Construct nodes of the NFSM
2.2 Filter functional dependencies
2.3 Add edges to the NFSM
2.4 Prune the NFSM
2.5 Add artificial start node and edges

3. Construct the DFSM - convert the NFSM into a DFSM

4. Precompute values

4.1 Precompute the compatibility matrix
4.2 Precompute the transition table



559 / 592

Physical Properties Ordering

Ordering FSM Construction - Determining the Input

• interesting orders (requested, required, index)

• OI = OP ∪ OT (produced vs. tested, allows pruning)

• functional dependencies (operators, keys)

• handles for O(1) comparisons

E.g.
F = {{b → c}, {b → d}}

OI = {(b), (a, b)} ∪ {(a, b, c)}



560 / 592

Physical Properties Ordering

Ordering FSM Construction - Constructing the NFSM

Initial nodes for OI

a,b,c

a,b

b



561 / 592

Physical Properties Ordering

Ordering FSM Construction - Constructing the NFSM (2)

Edges for F . Creates artificial node (can be pruned)

ǫ

b

a,b

a,b,c

b,c

a

b→c

ǫ

b→c ǫ



562 / 592

Physical Properties Ordering

Ordering FSM Construction - Constructing the NFSM (3)

Edges for initialization. (b, c) was pruned.

ǫ

b

a,b

a,b,c

a

b→c ǫ

*

1

2



563 / 592

Physical Properties Ordering

Ordering FSM Construction - Constructing the DFSM

Standard conversion algorithm

b→c

2

1

*

(a),(a,b),(a,b,c)

(a),(a,b)

(b)

• tests for OT are precomputed (materialized)



564 / 592

Physical Properties Ordering

Pruning Techniques

• reducing the NFSM reduces conversion time

• reducing the DFSM reduces search space

• FDs can be removed if no interesting orderings reachable

• artificial nodes can be merged if the behave identical

• artificial nodes can be removed it they only have ε edges

Note: search space reduction is a major benefit!



565 / 592

Physical Properties Ordering

Discussion

• orderings essential for query optimizations

• but orderings increase the search space

• management involved

• FSM representation needs O(1) time and space during optimization

• queried very often, but also very fast

• help reduce the search space



566 / 592

Physical Properties Grouping

Grouping

• sometimes ordering is a too strong requirement

• some operators do not need an order, they just want continuous
blocks for values

• group by operators are a typical example

• therefore: grouping property

• exploiting groupings is similar to exploiting orderings



567 / 592

Physical Properties Grouping

Grouping (2)

A grouping G is a set of attributes {A1, . . . ,An}

A tuple stream satisfies a grouping G , if tuples with the same values for
A1, . . . ,An are placed next to each other.

Note that the attributes within a grouping are unordered



568 / 592

Physical Properties Grouping

Ordering vs. Grouping

• ordering is a much stronger requirement than grouping

• every tuple stream that satisfies an ordering O = (A1, . . . ,An) also
satisfies the grouping G = {A1, . . . ,An}

• but there is not prefix deduction for groupings

• a tuple stream satisfying {A1,A2} does not necessarily satisfy {A1}
• could be derived from ordering information

• both types should be handled simultaneously



569 / 592

Physical Properties Grouping

Integrating Grouping into Ordering Processing

• groupings are similar to orderings

• can be modelled as FSMs, too (less edges, though)

• idea: build one big integrated FSM

• edges from orderings to corresponding groupings

• unifies these properties, makes pruning etc. much easier



570 / 592

Physical Properties Grouping

Constructing a Unified FSM

b,c

b

a,b,c

a,b

b

• create states for interesting orderings/groupings



571 / 592

Physical Properties Grouping

Constructing a Unified FSM (2)

b

a,b

a,b,c

b

b,c

b,c

a

{b → c} ǫ

ǫ

ǫ

{b → c}

{b → c}

q0

• consider functional dependencies

• note: no ε edge between groupings



572 / 592

Physical Properties Grouping

Constructing a Unified FSM (3)

b

a,b

a,b,c

b

b,ca

{b → c} ǫ

ǫ

{b → c}

q0

• prune artificial nodes



573 / 592

Physical Properties Grouping

Constructing a Unified FSM (4)

q
o

{b → c}

ǫ

ǫ{b → c}

a b,c

b

a,b,c

a,b

b
ǫ

(a,b)

(b)

{b}

• add additional edges for initialization



574 / 592

Physical Properties Grouping

Constructing a Unified FSM (4)

{b → c}

{b → c}

{b → c}

{b}

(b)

(a,b)

6:(a),(a,b),(a,b,c)

5:(b),{b},{b,c}

4:{b},{b,c}

3:(a),(a,b)

2:(b),{b}

1:{b}

q
o

• construct final DFSM



575 / 592

Physical Properties Grouping

Discussion

• algorithm for groupings similar to orderings

• include pruning etc.

• unified handling very nice

• easy integration of both into the query optimizer

• FSM representation very fast

• only constant space per plan



576 / 592

Physical Properties DAGs

DAGs

• execution plans until now were trees

• each operator has one consumer (except the root)

• no overlap

• very easy data flow

• but too limited in expressiveness

• a generalized plan structure requires some care (in this case a new
kind of properties)



577 / 592

Physical Properties DAGs

DAGs (2)

DAG - directed acyclic graph

More general than a tree, an operator can have more than one parent.
Allows for more efficient plans.



578 / 592

Physical Properties DAGs

Motivation for DAGs

common: views or shared expressions

• recognized e.g. by DB2

• uses buffering

• parts optimized independently

• not really a DAG then

σt≥m

✶cnat=n

✶cid=ocid

Γcid,cnat;s:sum(price)

Γn:cnat;m:max(s)

Customer Order



579 / 592

Physical Properties DAGs

Motivation for DAGs (2)

magic sets

• propagate domain information

• nice optimization, but requires
DAGs

Γm:mkt;d:avg(tax)

mkt=m

σnat=′D′

Πmkt

OrderCustomer



580 / 592

Physical Properties DAGs

Motivation for DAGs (3)

bypass plans

• handle tuples different
depending on predicates

• more efficient for disjunctive
queries

• more complex data flow

∪

T F

CBA



581 / 592

Physical Properties DAGs

Motivation for DAGs (4)

• also XPath/XQuery evaluation, distributed queries, dependent join
optimizations, ...

• optimizations not always beneficial, proper plan generation required

• buffering/temp reduces benefit, ”real” execution required

goal: generic DAG support



582 / 592

Physical Properties DAGs

DAG Generation - Correctness Problems

✶

✶

✶✶

CBABA ≡

✶

✶

✶

CBA 6≡

✶

✶

✶

CBA

• equivalences difficult to check

• here joins (apparently) not freely reorderable

• known equivalences not directly applicable



583 / 592

Physical Properties DAGs

DAG Generation - Correctness Problems (2)

✶a1.a=a2.a

✶b2.c=c.c

ρa2:a1,b2:b1

C : c

✶a1.b=b1.b

A : a1B : b1

• idea: sharing through renaming =⇒ share equivalence

• formal criteria to detect equivalent subproblems

• create logical trees, allows for reusing known equivalences



584 / 592

Physical Properties DAGs

Share Equivalence

A ≡S B iff ∃δA,B :A(A)→A(B) bijective ρδA,B (A) = B

• difficult to test in general

• but constructive definition simple

• can be computed easily

• will be the base of a property (next slides)



585 / 592

Physical Properties DAGs

DAG Generation - Optimal Substructure

✶

✶

✶

✶

✶

DCBCBA

✶

✶✶

✶

DCBA

local optimal global optimal

• shared plans destroy optimal substructure

• idea: encode sharing into the search space

• share equivalence for operators

• creates equivalence classes, describes possibilities to share



586 / 592

Physical Properties DAGs

DAG Generation - Optimal Substructure (2)

• generalize share equivalence from plans to operators

• would create share equivalent plans if the input were share equivalent

• classifies operators into equivalence classes

• only one operator from an equivalence class is relevant
(representative)

• annotate each plan with the equivalence class (property)

• keep plans if they offer more classes (more sharing)

• note: only whole trees can be shared



587 / 592

Physical Properties DAGs

DAG Generation - Search

Search component has to be adjusted:

• incorporate share equivalence

• try to rewrite problems as representatives

• if completely possible (whole tree) only use representatives

• creates implicit renames

• allows for reusing results

• adjust pruning, too



588 / 592

Physical Properties DAGs

Discussion

• DAGs allow for much better plans

• generation somewhat involved

• share equivalence as property guarantees optimal solution

• many details omitted here

• cost model

• execution


