
Accelerating Analytical Workloads

Thomas Neumann

Technische Universität München

April 15, 2014

Scale Out in Big Data Analytics

• Big Data usually means data is
distributed

• Scale out to process very large
inputs

• but for analytics data has to be
combined and aggregated

• typically map/reduce-based,
Hadoop/Hive etc.

• data is copied to processing nodes
for aggregations

• not very smart, dominated by
network traffic

• smart data movement can speed
up processing significantly

lineitem orders

join

group

sort

SWITCH

node 2

node 3

node 6

node 5

node 4

node 1

TPC-H Query 12 Main-Memory Cluster

Thomas Neumann Accelerating Analytical Workloads 2 / 26

Running Example (1)

• Focus on analytical query
processing in this talk

• TPC-H query 12 used as
running example

• Runtime dominated by join
orders on lineitem

• Example from well-known
benchmark, but applicable for
all distributed joins

lineitem orders

join

group

sort

SWITCH

node 2

node 3

node 6

node 5

node 4

node 1

TPC-H Query 12 Main-Memory Cluster

Thomas Neumann Accelerating Analytical Workloads 3 / 26

Running Example (2)

• Relations are equally distributed
across nodes

• We make no assumptions on
the data distribution

• Thus, tuples may join with
tuples on remote nodes

• Communication over the
network required

no
de

 3
no

de
 2

no
de

 1

lineitem
key shipmode
1 MAIL
1 MAIL
1 MAIL
2 SHIP
2 MAIL
6 SHIP
6 SHIP
6 SHIP

6 MAIL
10 SHIP
11 MAIL
11 MAIL
13 MAIL
13 MAIL

13 MAIL
13 SHIP
17 MAIL
18 MAIL
18 MAIL
19 SHIP
20 SHIP

orders
key priority
1 1-URGENT
2 2-HIGH
3 1-URGENT
4 5-LOW
5 3-MEDIUM
6 1-URGENT
7 2-HIGH
8 1-URGENT

9 1-URGENT
10 2-HIGH
11 3-MEDIUM
12 5-LOW
13 1-URGENT
14 3-MEDIUM
15 1-URGENT

16 3-MEDIUM
17 2-HIGH
18 3-MEDIUM
19 5-LOW
20 1-URGENT
21 2-HIGH

Thomas Neumann Accelerating Analytical Workloads 4 / 26

CPU vs. Network

1980 1990 2000 2010 2020
100

101

102

103

104

105

106

Ethernet

Token Ring

Fast Ethernet

Gigabit

10 Gigabit
(forecast)

L
A

N
b

an
d

w
id

th
[M

b
it

s]

100

101

102

103

104

105

106

80286
80386

80486

Pentium

Pentium Pro

Pentium 4

Core 2

Core i7

per
core

co
m

p
u

ti
n

g
p

ow
er

[M
IP

S
]

CPU speed has grown much faster than network bandwidth

Thomas Neumann Accelerating Analytical Workloads 5 / 26

Scale Out: Network is the Bottleneck

• Single node: Performance is
bound algorithmically

• Cluster: Network is bottleneck for
query processing

• Investing time and effort in
decreasing network traffic pays off

• Goal:
Increase local processing to close
the performance gap jo

in
 p

er
fo

rm
an

ce
 [M

 tu
pl

es
/s

]
0

50

100

150

200

distributed local

Thomas Neumann Accelerating Analytical Workloads 6 / 26

Neo-Join: Network-optimized Join [ICDE14]

1. Open Shop Scheduling
Efficient network communication

2. Optimal Partition Assignment
Increase local processing

3. Selective Broadcast
Handle value skew

Thomas Neumann Accelerating Analytical Workloads 7 / 26

Bandwidth Sharing

node 3

node 2node 1

node 2 node 3

node 1

SWITCH SWITCH

bottleneck

bottleneck

node 3

node 2node 1

node 2 node 3

node 1

SWITCH SWITCH

bottleneck

bottleneck

• Simultaneous use of a single link creates a bottleneck

• Reduces bandwidth by at least a factor of 2

Thomas Neumann Accelerating Analytical Workloads 8 / 26

Näıve Schedule

node 1 5 5
5 4
5 4

node 2
node 3

time

node 1 4 4 1 1
4 4 1
4 4 1

node 2
node 3

maximum straggler

bandwidth sharing

time
• Node 2 and 3 send to node 1 at the same time

• Bandwidth sharing increases network duration significantly

Thomas Neumann Accelerating Analytical Workloads 9 / 26

Open Shop Scheduling (1)

Avoiding bandwidth sharing translates to
open shop scheduling:

• A sender has one transfer per receiver

• A receiver should receive at most one
transfer at a time

• A sender should send at most one
transfer at a time

senders

receivers

node 2 node 3

node 3node 2node 1

node 1

transfers

Thomas Neumann Accelerating Analytical Workloads 10 / 26

Open Shop Scheduling (2)

Compute optimal schedule:

• Edge weights represent total transfer
duration

• Scheduler repeatedly finds perfect
matchings

• Each matching specifies one
communication phase

• Transfers in a phase will never share
bandwidth

senders

receivers

5 45

node 2 node 3

node 3node 2node 1

node 1

transfers

Thomas Neumann Accelerating Analytical Workloads 11 / 26

Optimal Schedule

node 1 5 5
1 1 1 1 1 4

1 1 1 1 1 4
node 2
node 3

time

node 1 4 4 1 1
4 4 1
4 4 1

node 2
node 3

maximum straggler

bandwidth sharing

time

• Open shop schedule achieves minimal network duration

• Schedule duration determined by maximum straggler

Thomas Neumann Accelerating Analytical Workloads 12 / 26

Distributed Join

• Tuples may join with tuples on
remote nodes

• Repartition and redistribute
both relations for local join

• Tuples will join only with the
corresponding partition

• Using hash, range, radix, or
other partitioning scheme

• In any case: Decide how to
assign partitions to nodes

⨝
⨝

⨝

⨝

⨝

⨝

⨝

⨝

fragmented redistributed

⨝
⨝

⨝

⨝

⨝

⨝

⨝

⨝

⨝

O2 L2

O1 L1

O3 L3

O L

Thomas Neumann Accelerating Analytical Workloads 13 / 26

Running Example: Hash Partitioning
no

de
 3

no
de

 2
no

de
 1

lineitem
key shipmode
1 MAIL
1 MAIL
1 MAIL
2 SHIP
2 MAIL
6 SHIP
6 SHIP
6 SHIP

6 MAIL
10 SHIP
11 MAIL
11 MAIL
13 MAIL
13 MAIL

13 MAIL
13 SHIP
17 MAIL
18 MAIL
18 MAIL
19 SHIP
20 SHIP

orders
key priority
1 1-URGENT
2 2-HIGH
3 1-URGENT
4 5-LOW
5 3-MEDIUM
6 1-URGENT
7 2-HIGH
8 1-URGENT

9 1-URGENT
10 2-HIGH
11 3-MEDIUM
12 5-LOW
13 1-URGENT
14 3-MEDIUM
15 1-URGENT

16 3-MEDIUM
17 2-HIGH
18 3-MEDIUM
19 5-LOW
20 1-URGENT
21 2-HIGH 445

445

556
x+2 mod 3

x+2 mod 3

x+2 mod 3

P2 P3P1

P2 P3P1

P2 P3P1

Thomas Neumann Accelerating Analytical Workloads 14 / 26

Assign Partitions to Nodes (1)

Option 1: Minimize network traffic

• Assign partition to node that owns
its largest part

• Only the small fragments of a
partition sent over the network

• Schedule with minimal network
traffic may have high duration

5 6 5

2 3 3

2 3 3

hash partitioning (x mod 3)

4

4

5

5

4

4
P2 P3P1

5 6 5

4 5 4

4 5 4

hash partitioning (x mod 3)

5

5

55

4

4

P2 P3P1

traffic: 26 time: 26 traffic: 28 time: 10

13
13

4 5 1
4 4 1
4 4 1

open shop schedule open shop schedule

n1

n3

n2

n1

n3

n2

n1
n2
n3

n1
n2
n3

5 6 5

2 3 3

2 3 3

hash partitioning (x mod 3)

4

4

5

5

4

4
P2 P3P1

5 6 5

4 5 4

4 5 4

hash partitioning (x mod 3)

5

5

55

4

4

P2 P3P1

traffic: 26 time: 26 traffic: 28 time: 10

13
13

4 5 1
4 4 1
4 4 1

open shop schedule open shop schedule

n1

n3

n2

n1

n3

n2

n1
n2
n3

n1
n2
n3

Thomas Neumann Accelerating Analytical Workloads 15 / 26

Assign Partitions to Nodes (2)

Option 2: Minimize response time:

• Query response time is time from
request to result

• Query response time dominated by
network duration

• To minimize network duration,
minimize maximum straggler

5 6 5

2 3 3

2 3 3

hash partitioning (x mod 3)

4

4

5

5

4

4
P2 P3P1

5 6 5

4 5 4

4 5 4

hash partitioning (x mod 3)

5

5

55

4

4

P2 P3P1

traffic: 26 time: 26 traffic: 28 time: 10

13
13

4 5 1
4 4 1
4 4 1

open shop schedule open shop schedule

n1

n3

n2

n1

n3

n2

n1
n2
n3

n1
n2
n3

5 6 5

2 3 3

2 3 3

hash partitioning (x mod 3)

4

4

5

5

4

4
P2 P3P1

5 6 5

4 5 4

4 5 4

hash partitioning (x mod 3)

5

5

55

4

4

P2 P3P1

traffic: 26 time: 26 traffic: 28 time: 10

13
13

4 5 1
4 4 1
4 4 1

open shop schedule open shop schedule

n1

n3

n2

n1

n3

n2

n1
n2
n3

n1
n2
n3

Thomas Neumann Accelerating Analytical Workloads 16 / 26

Minimize Maximum Straggler

• Formalized as mixed-integer
linear program

• Shown to be NP-hard in worst
case

• But in practice fast enough
using CPLEX or Gurobi
(< 0.5 % overhead for 32 nodes,
200 M tuples each)

• Partition assignment can
optimize any partitioning

tu

pl
es

Node 0 Node 1 Node 2

P0 P1 P2 P3 P4 P5 P6 P7 P0 P1 P2 P3 P4 P5 P6 P7 P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

Node 0

Node 1

Node 2

network phase duration

⬆
⬇

⬆
⬇

⬆
⬇

2 11 2 3 3 9 2 0

7 1 7 7 1 4 1 4

1 3 2 2 10 3 10 1

0 2 4 6 8 10 12

Node 0

Node 1

Node 2

SSS
21
13
9
1
13
15
14
0
22
21
28
10
10
15
31
29

RRRR
10
10
1
13
8
1
22
29
26
3
11
7
16
3
15
2

SSS
7
19
17
18
24
19
27
12
30
24
19
16
14
26
18
24

RRRR
24
8
24
8
19
4
26
18
27
5
23
2
27
20
22
17

SSS
26
3
23
16
9
6
15
24
6
19
7
20
23
5
4
20

RRRR
20
11
23
6
23
4
18
5
14
22
6
15
23
4
3
6

(a) Create histograms according to the last three bits of the join key

tu

pl
es

Node 0 Node 1 Node 2

P0 P1 P2 P3 P4 P5 P6 P7 P0 P1 P2 P3 P4 P5 P6 P7 P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

Node 0

Node 1

Node 2

network phase duration

⬆
⬇

⬆
⬇

⬆
⬇

2 11 2 3 3 9 2 0

7 1 7 7 1 4 1 4

1 3 2 2 10 3 10 1

0 2 4 6 8 10 12

Node 0

Node 1

Node 2

SSS
21
13
9
1
13
15
14
0
22
21
28
10
10
15
31
29

RRRR
10
10
1
13
8
1
22
29
26
3
11
7
16
3
15
2

SSS
7
19
17
18
24
19
27
12
30
24
19
16
14
26
18
24

RRRR
24
8
24
8
19
4
26
18
27
5
23
2
27
20
22
17

SSS
26
3
23
16
9
6
15
24
6
19
7
20
23
5
4
20

RRRR
20
11
23
6
23
4
18
5
14
22
6
15
23
4
3
6

(b) Compute an optimal partition as-
signment based on the histograms

tu

pl
es

Node 0 Node 1 Node 2

P0 P1 P2 P3 P4 P5 P6 P7 P0 P1 P2 P3 P4 P5 P6 P7 P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

Node 0

Node 1

Node 2

network phase duration

⬆
⬇

⬆
⬇

⬆
⬇

2 11 2 3 3 9 2 0

7 1 7 7 1 4 1 4

1 3 2 2 10 3 10 1

0 2 4 6 8 10 12

Node 0

Node 1

Node 2

SSS
21
13
9
1
13
15
14
0
22
21
28
10
10
15
31
29

RRRR
10
10
1
13
8
1
22
29
26
3
11
7
16
3
15
2

SSS
7
19
17
18
24
19
27
12
30
24
19
16
14
26
18
24

RRRR
24
8
24
8
19
4
26
18
27
5
23
2
27
20
22
17

SSS
26
3
23
16
9
6
15
24
6
19
7
20
23
5
4
20

RRRR
20
11
23
6
23
4
18
5
14
22
6
15
23
4
3
6

(c) Resulting send/receive costs deter-
mine the network phase duration

Fig. 4. Example for the optimal partition assignment which aims at a minimal
network phase duration with three nodes and eight (23) radix partitions

maximum stragglers with a cost of 12 as depicted in Fig. 4(c).
For a perfect hash partitioning one would expect that every
node has to send 1�n-th of its tuples to every other node (≈
21) and also receive 1�n-th of the tuples from every other
node (also ≈ 21). In this simplified example, radix partitioning
reduced the duration of the network phase by almost a factor
of two compared to hash partitioning.

B. Optimal Partition Assignment (Phase 2)

The previous section described how to repartition the input
relations so that tuples with the same join key fall into the same
partition. In general, the new partitions are fragmented across
the nodes. Therefore, all fragments of one specific partition
have to be transferred to the same node for joining. This
section describes how to determine an assignment of partitions
to nodes that minimizes the network phase duration.

We define the receive cost of a node as the number of
tuples it receives from other nodes for the partitions that were
assigned to it. Similarly, its send cost is defined as the number
of tuples it has to send to other nodes. Section III-C4 shows
that the minimum network phase duration is determined by the
node with the maximum send/receive cost. The assignment is
therefore optimized to minimize this maximum cost.

A naı̈ve approach would assign a partition to the node that
owns its largest fragment. However, this is not optimal in
general. Consider the assignment for the running example in
Fig. 4(b). Partition 7 is assigned to node 1 even though node 0

owns its largest fragment. While the assignment of partition 7
to node 0 reduces the send cost of node 0 by 4 tuples, it also
increases its receive cost to a total of 13 tuples. As a result, the
network phase duration increases from 12 to 13 (cf. Fig. 4(c)).

1) Mixed Integer Linear Programming: We phrase the par-
tition assignment problem as a mixed integer linear program
(MILP). As a result, one can use an integer programming
solver to solve it. The linear program computes a configuration
of the decision variables xij ∈ {0,1}. These decision variables
define the assignment of the p partitions to the n nodes: xij = 1
determines that partition j is assigned to node i, while xij = 0
specifies that partition j is not assigned to node i.

Each partition has to be assigned to exactly one node:
n−1�
i=0 xij = 1 for 0 ≤ j < p (1)

The linear program should minimize the duration of the
network phase, which is equal to the maximum send or receive
cost over all nodes. We denote the send cost of node i as si

and its receive cost as ri. The objective function is therefore:

min max
0≤i<n{si, ri} (2)

Using the decision variables xij and the size of partition j
at node i—denoted with hij—we can express the amount of
data each node has to send (si) and receive (ri):

si = p−1�
j=0 hij ⋅ (1 − xij) for 0 ≤ i < n (3)

ri = p−1�
j=0
��xij

n−1�
k=0,i≠k hkj

�� for 0 ≤ i < n (4)

Equation 3 computes the send cost of node i as the size
of all local fragments of partitions that are not assigned to
it. Likewise, equation 4 adds the size of remote fragments of
partitions that were assigned to node i to the receive cost.

MILPs require a linear objective, which minimizing a max-
imum is not. Fortunately, we can rephrase the objective and
instead minimize a new variable w. Additional constraints take
care that w assumes the maximum over the send/receive costs:

(OPT-ASSIGN)

minimize w, subject to

w ≥ p−1�
j=0 hij(1 − xij) 0 ≤ i < n

w ≥ p−1�
j=0
��xij

n−1�
k=0,i≠k hkj

�� 0 ≤ i < n

1 = n−1�
i=0 xij 0 ≤ j < p

One can obtain an optimal solution for a specific partition
assignment problem (OPT-ASSIGN) by passing the mixed
integer linear program to an optimizer such as Microsoft
Gurobi3 or IBM CPLEX4. These solvers can be linked as a
library to create and solve linear programs via API calls.

3http://www.gurobi.com
4http://ibm.com/software/integration/optimization/cplexThomas Neumann Accelerating Analytical Workloads 17 / 26

Running Example: Locality
no

de
 3

P2 P3P1

no
de

 2

P2 P3P1

no
de

 1

P2 P3P1

lineitem
key shipmode
1 MAIL
1 MAIL
1 MAIL
2 SHIP
2 MAIL
6 SHIP
6 SHIP
6 SHIP

6 MAIL
10 SHIP
11 MAIL
11 MAIL
13 MAIL
13 MAIL

13 MAIL
13 SHIP
17 MAIL
18 MAIL
18 MAIL
19 SHIP
20 SHIP

orders
key priority
1 1-URGENT
2 2-HIGH
3 1-URGENT
4 5-LOW
5 3-MEDIUM
6 1-URGENT
7 2-HIGH
8 1-URGENT

9 1-URGENT
10 2-HIGH
11 3-MEDIUM
12 5-LOW
13 1-URGENT
14 3-MEDIUM
15 1-URGENT

16 3-MEDIUM
17 2-HIGH
18 3-MEDIUM
19 5-LOW
20 1-URGENT
21 2-HIGH

radix

radix

radix

15

11

112

1 1

1

Thomas Neumann Accelerating Analytical Workloads 18 / 26

Locality

• Running example exhibits
time-of-creation clustering

• Radix repartitioning on most
significant bits retains locality

• Partition assignment can exploit
locality

• Significantly reduces query
response time

15 1 0

1 11 1

0 2 11
P2 P3P1

radix partitioning (MSB)

traffic: 5 time: 3

1
11

2

open shop schedule

n1

n3

n2

n1
n2
n3

1

0

1

2

0

1

15 1 0

1 11 1

0 2 11
P2 P3P1

radix partitioning (MSB)

traffic: 5 time: 3

1
11

2

open shop schedule

n1

n3

n2

n1
n2
n3

1

0

1

2

0

1

Thomas Neumann Accelerating Analytical Workloads 19 / 26

Broadcast

• Alternative to data
repartitioning

• Replicate the smaller relation
between all nodes

• Larger relation remains
fragmented across nodes

broadcast O local join

O L

O

O L

O

⨝

⨝

⨝

Thomas Neumann Accelerating Analytical Workloads 20 / 26

Selective Broadcast

• Decide per partition whether to
assign or broadcast

• Broadcast orders for P2, let line
items remain fragmented

• Assign the other partitions taking
locality into account

• Improves performance for high
skew and many duplicates

2 1 1 6 1 1

1 1 1 6 1 1

1 1 1 5 2 2
O2

hash partitioning (mod 3)

traffic: 14 time: 6

3 1
3 3

1 3

open shop schedule

n1

n3

n2

n1
n2
n3

L2O1 L1 O3 L3

2 1 1 6 1 1

1 1 1 6 1 1

1 1 1 5 2 2
O2

hash partitioning (mod 3)

traffic: 14 time: 6

3 1
3 3

1 3

open shop schedule

n1

n3

n2

n1
n2
n3

L2O1 L1 O3 L3

Thomas Neumann Accelerating Analytical Workloads 21 / 26

Experimental Setup

• Cluster of 4 nodes

• Core i7, 4 cores, 3.4 GHz, 32 GB RAM

• Gigabit Ethernet

• Tuples consist of 64 bit key, 64 bit payload

Thomas Neumann Accelerating Analytical Workloads 22 / 26

Locality

• Vary locality from 0%
(uniform distribution) to 100%
(range partitioning)

• Neo-Join improves join
performance from 29 M to
156 M tuples/s (> 500 %)

• 3 nodes, 600 M tuples jo
in

 p
er

fo
rm

an
ce

 [t
up

le
/s

]
0 M

40 M

80 M

120 M

160 M

locality

0 % 25 % 50 % 75 % 100 %

Neo-Join Hadoop Hive
DBMS-X MySQL Cluster

Thomas Neumann Accelerating Analytical Workloads 23 / 26

TPC-H Results (scale factor 100)

• Results for three selected
TPC-H queries

• Broadcast outperforms hash
for large relation size differences

• Neo-Join always performs better
due to selective broadcast and
locality

• 4 nodes, ca. 100GB data
ex

ec
ut

io
n

tim
e

[s
]

0

1

2

3

4

5

6

7

TPC-H queries

Q12 Q14 Q19

hash broadcast Neo-Join

Thomas Neumann Accelerating Analytical Workloads 24 / 26

Further Optimizations

Network-aware joining is only one ingredient

• All Query Processing steps are important
• parallel, network aware, maximize locality [PVDB12]

• group by, sort, cube, ... [DEBUL14, SIGMOD13, PVLDB11]

• also: smart loading/parsing [PVLDB13]

• Query Optimization has a huge impact
• Reformulate the query into a more efficient form [EDBT14,ICDE12]

• Involves algebraic optimization, exploiting statistics, etc. [ICDE11]

• Can improve runtimes by orders of magnitude!

Result is much faster than a naive map/reduce approach.

Thomas Neumann Accelerating Analytical Workloads 25 / 26

Conclusion

Analyzing Big Data is challenging

• very large volume, distributed

• many operations require joining data

• network is a bottleneck

We can use optimization techniques to speed up the analysis

• maximize bandwidth

• exploit data characteristics (locality, skew, etc.)

• smart scheduling of operations

Improves over commonly used approaches like Hive by order of magnitudes.

Thomas Neumann Accelerating Analytical Workloads 26 / 26

