Querying Graph-Structured Data

Thomas Neumann

Technische Universitat Miinchen

November 4, 2016

Motivation Tl

Many interesting data sets of a graph structure.

e very flexible

e easy to model

e but difficult to query
e often very large

e no obvious structure

e how to store and
process?

Linked Open Data cloud is use. Contains data sets with billions of
entries.

N

Thomas Neumann Querying Graph-Structured Data

32

Graph-structured data

Description Framework).

One way to model graph-structured data is to use RDF (Resource

e conceptually a directed graph with edge labels

e each edge represents a fact (triple in RDF notation)

e triples have the form (subject, predicate, object)
Example:

e <obj; > <cityName> 'Berlin’

obj
Berlin J%i
O E
e <obj; > <isCapitalOf> <obj, > 2N
e <objy > <countryName> 'Germany'

2 Germany
objy — 5
Everything is encoded as triples, queries operate on triples.

Thomas Neumann

Querying Graph-Structured Data

SPARQL Protocol and RDF Query Language

All capitals in Europe:

SELECT 7capital 7country
WHERE {
?x <cityName> 7capital.
?x <isCapitalOf> 7y.
7y <countryName> ?7country.
7y <isInContinent> <Europe>.

e querying via pattern matching in RDF graph
e queries are sets of triple patterns

e variable occurrences imply joins

Problem: huge graph, many variable bindings possible

Thomas Neumann Querying Graph-Structured Data

How to process SPARQL queries? T

e we could use a (relational) database
e load the graph as triples into a table
e patterns form filters and joins

e produces the correct answer

e but very inefficient

e the database does not “understand” the graph structure

a specialized RDF engine is more efficient
| will talk about RDF-3X here (open source)

Thomas Neumann Querying Graph-Structured Data 5 /32

Indexing RDF Graphs

Primary data structure: clustered B™-trees

e stores triples in lexicographical order
e allows for good compression (differences are small)
e sequential disk accesses, fast lookups

Example: Sort order (S,P,0), triple pattern: (obyji, pred, ?x)
= Read range (obj1, pred, —o0)-(obj1, pred, cc0) in BT -tree

Which sort order to choose?
e index is heavily compressed, space consumption not that critical
e 3! = 6 possible Orderings = 6 B™-trees
e always the 'right’ sort order available, efficient merge joins

e.g. 7x <cityName> 7capital.?x <isCapitalOf> 7y. =
(cityName, ?x, ?capital) pso X (isCapitolOf , 7x,?y) pso

Thomas Neumann Querying Graph-Structured Data

Runtime Improvements

RDF-3X uses many techniques to improve runtime performance:

e compressed B-trees reduce size and improve |/O performance

exhaustive indexing often allows for cheap merge joins

sideways information passing skips over large parts of the data

e works on compressed/encoded data as much as possible

Optimize performance and minimize disk 1/0.

Thomas Neumann Querying Graph-Structured Data

Indexing is Not Enough T

select *

where {
?s yago:created 7product.
7s yago:hasLatitude 7lat.
?s yago:hasLongitude 7long

}
created hasLongitude
hasLongitude hasLatitude created hasLatitude
Suboptimal: | X1 | = 140 Min Optimal: | x1 | =14 K
Runtime: 65 ms Runtime: 20 ms

Query optimization has a huge impact, sometimes orders of magnitudes.

Thomas Neumann

Querying Graph-Structured Data 8 /¢

Cardinality Estimation

Traditional estimating :
e estimates for individual predicates and joins
e combined assuming independence

e statistical synopses

Not well suited for RDF data

Thomas Neumann Querying Graph-Structured Data

32

Why are Standard Histograms not Enough?

Some number from the Yago data set:

sel(o p=isCitizenof) 1.06 % 10~*
Se/(O—O:United,States) 6.41 x« 104
Se/(UP:isCitizenOf/\O:United,States) 486 107°
SeI(UP:isCitizenOf) * Se/(UO:United,States) 6.80 x 108

e independence assumption does not hold
e leads to severe underestimation
e multi-dimensional histograms would help (expensive)

e looking at individual triples is not enough

For RDF data, correlation is the norm!

Thomas Neumann Querying Graph-Structured Data

Why is Correlation a Problem? m

Correlation occurs across triples:
e some triples are closely related

e independence does not hold

Very common:
e soft functional dependencies

e if we know bind triple pattern,
the others become unselective

e not captured by attribute
histograms

Example Triples

< o1 > <title> "The Tree and I".
< 01 > <author> <R. Pecker>.
< 01 > <author> <D. Owl>.

< 01 > <year> "1996".

Thomas Neumann Querying Graph-Structured Data 11/ 32

Why Not Sampling?

| =

Yago sample

RDF is very unfriend!
y y <wikicategory_Wilderness_Areas_of_lllinois> rdfs:label " Wilderness Areas of

for sampling llinois” .
< Telephone_numbers_in_Cameroon> rdfs:label " \u002b237" .

<Washington_Park_Race_Track> rdfs:label " Washington Park” .
® no SChema <Seth_R.J.J._High_School> rdfs:label " Sett R\u002eJ\u002eJ\u002e High
" . " School” .
® One huge relation < Tengasu> rdfs:label " Tengasu” .
<Immaculate_Heart_Academy> rdfs:label "Immaculate Heart Academy” .
° bi”ions of tu ples <Sion,_Switzerland> rdfs:label " Sion\u002c Switzerland” .

<wordnet_heroism_104857738> rdfs:label " gallantry” .
H <Khyber_Pakhtunkhwa> rdfs:label " Khyber\u002dPakhtunkhwa" .
® Very d|Verse <J%C3%Alnos_Pap> rdfs:label " Janos Pap” .
<wikicategory-Jan_Smuts> rdfs:label " Jan Smuts” .

Sample would have to be huge to be useful.

Thomas Neumann Querying Graph-Structured Data 12 / 32

Capturing Correlations

We classify the tuples using characteristic sets

compact data structure

e groups triples by "behavior”

e within a group, triples are more homogeneous

e groups are annotated with occurrence statistics

e allows for deriving estimates for whole query fragments

e captures correlations within tuples and across tuples

Allows for very accurate cardinality estimates.

Thomas Neumann Querying Graph-Structured Data

Characteristic Sets
Observation: nodes are characterized by outgoing edges

Sc(s) :=={p|Fo: (s,p,0) € R}.
Sc(R) :={Sc(s)|3p,0: (s,p,0) € R}.

< 01 > <title> "The Tree and |I". < 01 > <author> <R. Pecker>.
< 01 > <author> <D. Owl>. < 01 > <year> "1996".

< op > <title> "Emma". < op > <author> <J. Austen>.

< 0y > <year> "1815". <J. Austen> <hasName> "Jane Austen”.
<J. Austen> <bornln> <Steventon>.

Sc(o1) = {title, author, year}

Sc(o02) = {title, author, year}

Sc = {{title, author, year}?, { hasName, bornin}*}

Thomas Neumann Querying Graph-Structured Data 14 / 32

Estimating Distinct Subjects
We can use characteristic sets for cardinality estimation

query: select distinct 7e
where { 7e <author> 7a. 7e <title> 7t. }

cardinality: > sc(s|sesc(R)A{author title} 5} COUNE(S)

e the computation is exact! (only for distinct, though)
e can estimate a large number of joins in one step

e number of characteristic sets is surprisingly low

Number of Characteristic Sets

triples characteristic sets

Yago 40,114,899 9,788
LibraryThing 36,203,751 6,834
UniProt 845,074,885 613

Thomas Neumann Querying Graph-Structured Data 15 / 32

Occurrence Annotations

Without distinct we need occurrence annotations

distinct | |{s|3p,0: (s,p,0) € RA Sc(s) = S}|

count(p1) | [{(s; p1, 0)|(s,

pr,0) € RASc(s) = ST

count(pz) | [{(s, p2, 0)|(s,

p2,0) € RASc(s) =S}

Example

select 7a 7t where { ?e <author> 7a. 7e <title> 7t. }

distinct || author | title

year

1000 2300 | 1010

1090

2300 , 1010
Estimate: 1000 * =50 * 1600

= 2323

e no longer exact, but very accurate in practice

Thomas Neumann

Querying Graph-Structured Data

Using Characteristic Sets

e characteristic sets accurately describe individual subjects
e but a query touches more than one subject

e combine characteristics sets to form whole queries

General strategy:
e exploit as much information about correlation as possible
e ignore the joins order ("holistic” estimates)
e avoids " fleeing to ignorance”

e cover the query with characteristic sets

Thomas Neumann Querying Graph-Structured Data

Example m

select 7a 7t where { ?b <author>7a. ?b <title>7?t. ?b <year>"2009".
?b <publishedBy>?p. 7p <name>"ACM". }

?a 7t

9,

Z N

?

5 ’b p"b/,:%
& e
V W

name
P

2009 — _ ACM (?b, year, 2009)

(?b, author, ?a) (?b, title, ?t)

(?b, publishedBy , ?p)

(?p, name, ACM)

RDF query graph traditional query graph

e we cover the query with characteristic sets

Thomas Neumann Querying Graph-Structured Data

Example m

select 7a 7t where { 7b <author>7a. 7b <title>7t. ?b <year>"2009".
?b <publishedBy>7p. ?7p <name>"ACM". }

?a 7t (?b, author, 7a) (?b, title, ?t)
9(/, e
Y» ,V
. ?b D[,b//,
y W
s
name .
2009 7p ——— ACM (?b, year,2009) —— (?b, publishedBy, ?p) (?p, name, ACM)

RDF query graph traditional query graph

e we cover the query with characteristic sets

o prefer large sets over small sets

Thomas Neumann Querying Graph-Structured Data

Example m

select 7a 7t where { 7b <author>7a. 7b <title>7t. ?b <year>"2009".
?b <publishedBy>?p. 7p <name>"ACM". }

?a 7t (?b, author, ?7a) (?b, title, ?t)
0. X
b by,
2009 7p —2MC AcMm (2b, year, 2009) —— (2b, publishedBy, 7p) (?p, name, ACM)
RDF query graph traditional query graph

e we cover the query with characteristic sets
o prefer large sets over small sets

e assume independence for the rest

Thomas Neumann Querying Graph-Structured Data

Challenges of SPARQL query optimization

Query Optimization:

Query Compilation = Query Execution
(dominated by query optimization)

Thomas Neumann Querying Graph-Structured Data 19 / 32

Challenges of SPARQL query optimization

Query Optimization:

Query Compilation = Query Execution
(dominated by query optimization)
RDF-3X 78 s 2s
Virtuoso 7 13s 384 s

Thomas Neumann Querying Graph-Structured Data 19 / 32

Challenges of SPARQL query optimization

Query Optimization:

Query Compilation = Query Execution
(dominated by query optimization)
RDF-3X 78 s 2s
Virtuoso 7 13s 384 s
(next slides) 12s 2s

We ran a query with 17 joins on YAGO dataset (100 Min triples)

Thomas Neumann Querying Graph-Structured Data 19 / 32

Why does it happen?

Properties of the model:
e RDF is a very verbose format
e TPC-H Q5: 5 joins in SQL vs 26 joins in SPARQL (assuming a triple
store storage)
e Dynamic Programming (RDF-3X) becomes too expensive

Properties of the data:
e Lots of correlations, including structural
e If an entity has a LastName, it is likely to have a FirstName

e Greedy Algorithm (Virtuoso) often makes wrong choices in the
beginning

Thomas Neumann Querying Graph-Structured Data 20 / 32

Combining Estimation and Optimization
Given a SPARQL query:

German_novellist

an Italy
10
» 2book links To 2city
A
& g s g
S > ® =
N > N B
Nobel_Prize ?place ?long ?lat

Thomas Neumann

Querying Graph-Structured Data

21

32

Combining Estimation and Optimization
Given a SPARQL query:

102
createqd linksTo i
? *— ?book ?city
. o \

\ Q\@ % . 0{\60 g

’) i \)
. AR &/
\ N > ' '\ o,
*«_ Nobel_Prize 7plaf¢ ?long ?lat

e How to optimize star-shaped subqueries?

Thomas Neumann

Querying Graph-Structured Data

32

Combining Estimation and Optimization m

Given a SPARQL query:

/" German_novellist N el h
/ %@ ‘\\ , an Italy's
h ,
: od linksTe 1o ‘
\ create nks o . \
| . p *— ?book 7 ?city \
\ i
: AR N AT :
N\ N > | ! Y Ul !
\ o = h i s I'w /
N $ > : ' N ©, K
*«_ Nobel_Prize 7plaf¢ ‘?long ?lat S

e How to optimize star-shaped subqueries?

e How to capture selectivities between subqueries?

Thomas Neumann Querying Graph-Structured Data 21

32

Combining Estimation and Optimization
Given a SPARQL query:

German_novellist

]
'
Q\\ % OQ% 3
N > & @
o = @ >
$ \Q Cad

Nobel_Prize ?place

e How to optimize star-shaped subqueries?
e How to capture selectivities between subqueries?

e How to optimize arbitrary-shaped queries?

Thomas Neumann

Querying Graph-Structured Data

32

Tm

Optimizing star-shaped subqueries

o {type, livedin, bornin, created} — 1025 entities
e Characteristic Set

e Count all distinct Char.Sets with number of
Tplacel % occurrences

% & o Accurate estimation of cardinalities of
% & star-shaped queries
7p
o S

7type ?place2

Thomas Neumann Querying Graph-Structured Data 22 /32

Tm

Optimizing star-shaped subqueries

o {type, livedin, bornin, created} — 1025 entities
e Characteristic Set
e Count all distinct Char.Sets with number of
Pplacel ? occurrences
s
% & o Accurate estimation of cardinalities of
% & star-shaped queries
7 e One step beyond: what is the rarest subset of
o/ g the given CS?
y % o {type, livedin, bornln} — 13304 entities
, , o {type, livedIn, created} — 6593 entities
“pe place o {type, bornin, created} — 6800 entities
o {livedin, bornIn, created} — 2399 entities

e type is not present in the rarest subset; we
want to join it the last

N
N
w
N

Thomas Neumann Querying Graph-Structured Data

Example

X p: 154

{type, livedIn, bornin, created}, ID : 154 \
‘ ID: 27 ?p, type, 704)

{livedin, bornln, created}, ID : 27 / \
\

X
N

| X p: ?p, bornin, 70;)
{livedin, created}, ID : 6 /

(?p, created, ?0; ?p, livedin, ?03)

o

Thomas Neumann Querying Graph-Structured Data 23 /32

Properties of the algorithm

e Linear time, top-down, greedy
e Does not assume independence between predicates (unlike bottom-up
greedy)

Thomas Neumann Querying Graph-Structured Data 24 / 32

Cardinality estimates in arbitrary queries

German_novellist

<
&£
Yv

Germany
cated\n
0
bornin . \/
p Pcity
. QJ —
& 2 s/ \g
§ S & -
N > A s
Nobel_Prize ?place

e How to estimate the cardinality of this query?

e Two subqueries depend on each other: every person is likely to have
one birthplace in the data

e Just multiplying their frequencies is a big underestimation

Thomas Neumann Querying Graph-Structured Data

25 /32

Cardinality estimates in arbitrary queries

German_novellist

2 Germany
2, ain
© ate

\ bornin . \(/

Thognas Mann Liibeck

Q\QJ % \,0(\60 =

S = 2 o

N > A\ o,
Nobel_Prize Zurich 10° E 53° N

e How to estimate the cardinality of this query?

e Two subqueries depend on each other: every person is likely to have
one birthplace in the data

e Just multiplying their frequencies is a big underestimation
o We will construct a lightweight statistics of the dataset

e Count how frequently these two star-shaped subgraphs appear
together

Thomas Neumann Querying Graph-Structured Data 25 / 3¢

Characteristic Pairs Tl

e Characteristic Pair: Two Characteristic Sets that appear connected
via an edge in the dataset

e |dentifying CP: one scan over the data once the Char.Sets are
computed

e In the worst case, the number of CP grows quadratically with
different Char.Sets

e But we are only interested in very frequent ones

e If the pair is rare, the independence assumption holds

Thomas Neumann Querying Graph-Structured Data 26 / ¢

Char.Pairs: Estimating the cardinalities

select distinct ?s 70

{S;} < Char.Sets with {p1, p2, p3}

where { ?s p1 ?x. o {S!} < Char.Sets with {ps}
? ?
S P2 X2 e Form all the Char.Pairs between {S;}
?s p3 ?o. and {S!}
70 pa Ty} :

Get their counts, sum up

Thomas Neumann Querying Graph-Structured Data 27 / 32

e How to optimize star-shaped subqueries?

Outline

Given a SPARQL query:

German_novellist

2

»O®

7pcreated o ok —1MksTo 5,
2

& \e & \z
> & ©
S % & '
N > AN 2
Nobel_Prize ?place ?long ?lat

e How to capture selectivities between subqueries?

Thomas Neumann

Querying Graph-Structured Data

102

e a\n Italy

N

32

Outline

Given a SPARQL query:

German_novellist

&
<
0@

p _created ?book links To city
@
Q’\Q’ % OQ% >
= N [
s % s/ &
N > AN 2
Nobel_Prize ?place ?long ?lat

e How to optimize star-shaped subqueries?

e How to capture selectivities between subqueries?

e How to optimize arbitrary-shaped queries?

Thomas Neumann

Querying Graph-Structured Data

Ital,
a\n Yy
02
\o(,a

Query simplification

K . .- .
/" German_novellist AN o ooy
/ < A . taly
; % | ; el T
' Y J W \
i created linksTo , \
\ ?p *— ?book — city \
! @ \ / '
\ &% : P\ !
A RN = i I (}/ wn 1
'\ Q = ' ! > by !
N N K |‘ AN =)
N . ’ \ ’
*._ Nobel_Prize 7?placg ‘?long ?lat !
N S . i ’ \\ ’ ’
N . . .

o We start with identifying optimal plans for subqueries

Thomas Neumann Querying Graph-Structured Data

32

Query simplification

P, created 2book linksTo P

o We start with identifying optimal plans for subqueries
e Now, we remove them from the SPARQL query graph, and run the
Dynamic Programming algo

Thomas Neumann Querying Graph-Structured Data 29 / 32

Query simplification nm

ted linksTc
P ”ejle ?book ’”Sz ° 7w,

o We start with identifying optimal plans for subqueries

e Now, we remove them from the SPARQL query graph, and run the
Dynamic Programming algo

e We know the selectivities between the subqueries

Thomas Neumann Querying Graph-Structured Data

Query simplification

Thomas Neumann

d linksTc
7Py~ 2hook o 7P
Entities | Partial Plan | Cost
{P1} (wonPrize w type) ® bornin 3000
{P2} (locatedIn x hasLong) x hasLat 5000
{book} IndexScan(P = linksTo, S =?book) | 4500
7500

{P1, book} | ((wonPrize X type) x bornln) x wrote

Querying Graph-Structured Data

32

Compile and Runtime for YAGO

Query Size (number of joins)
total runtime (optimization time)

Algo [10,20) [20,30) (30, 40) [40, 50]

DP 7745(7130) - - -
DP-CS | 65767(65223) - - -
Greedy 857 (133) | 1236 (413) | 2204 (838) | 4145 (1194)

HSP 1025 (2) 3189 (3) 4102 (4) 10720 (5)

Char.Pairs | 660 (150) 967 (315) | 1211 (348) | 2174 (890)

Thomas Neumann

Querying Graph-Structured Data

30

32

Other Challenges

complex paths (transitivity etc.)

e complex aggregates

updates

transactions

Many hard problems, need careful analysis and tests.

Thomas Neumann Querying Graph-Structured Data

31

32

Conclusion

Graph Data Processing is hard

e complex, not schema, correlations, etc.

e requires efficient storage and indexing

e query optimization is essential

o powerful techniques pay off very quickly

Many interesting problems still open.

Thomas Neumann

Querying Graph-Structured Data

