
1

Cloud-Based Data Processing

OLAP in the cloud

Jana Giceva

 Traditional data warehousing systems are built for:

 Predictable, slow-evolving internal data

 Relational data, structured in a star- or snowflake schema

 Complex ETL (extract-transform-load) pipelines and physical tuning (compression, layout, etc.)

 Limited number of users and use-cases

Traditional OLAP / data warehouses

2

img src: https://panoply.io/data-warehouse-guide

 Data in the cloud:

 Dynamic, external sources: web, logs, mobile devices, sensor data, etc.

 ELT instead of ETL (extract-load-transform) – data transformation is done inside the system

 Often in semi-structured data format (e.g., JSON, XML, Avro)

 Access required by many users, with very different use-cases

Cloud-based data

3img src: InterWorks

Are DW still relevant in the era of BigData?

4

SELECT * FROM Data WHERE

field LIKE ‘%XYZ%’;

SELECT pageURL, pageRank

FROM Rankings WHERE

pageRank > X;

JOIN

Source: Pavlo et al. (2009). A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD

 Schemas are a good idea (parsing text is slow)

 Auxiliary data structures help boost performance (value indexes, join indexes)

 Optimized algorithms and storage structures: layout, data formatting, order of execution, choice of algorithm

 Architecture: shared-nothing

 Important architectural dimensions and methods

 Storage:

 Columnar storage, compression, data pruning

 Table partitioning, distribution

 Query engine:

 Vectorized or JIT code-gen

 Query optimization

 Fine- and coarse-grained parallelism

 Cluster:

 (Meta-) data sharing

 Resource allocation and management

Data warehouse system architecture

5

 Data layout: column-store vs. row-store

 Column-stores only read relevant data (skip irrelevant data by skipping unrelated columns)

 Suitable for analytical workloads (better use of CPU caches, SIMD registers, lightweight compression).

 E.g., Parquet, ODC, etc.

 Storage format: compression is key!

 Trades I/O for CPU and good fit for large datasets (storage) and I/O intensive workloads

 Excellent synergy with column-stores

 E.g., RLE, gzip, LZ4, etc.

 Pruning: skip irrelevant data using a MinMax index.

 Data is usually ordered  can maintain a sparse MinMax index

 Allows to skip irrelevant data horizontally (rows).

Data warehouse storage

6

 Data is spread based on a key

 Functions: hash, range, list

 Distribution (system-driven)

 Goal: parallelism

 Give each compute node a piece of the data

 Each query has work on every piece (keep everyone busy)

 Partitioning (user-specified)

 Goal: data lifecycle management

 Data warehouse e.g., keeps last six months

 Every night: load one new day, drop the oldest partition

 Goal: improve access pattern

 When querying for May, drop P1,P3,P4 (partition pruning).

Table partitioning and distribution

7

img src: P.Boncz (CWI)

Scalability is not as important unless you can make the most out of the underlying hardware.

 Vectorized execution

 Data is not materialized (as in Volcano or MapReduce), but pipelined (push-based) in batches

 Batch-size (few thousand rows) to save I/O, and greatly improve cache efficiency.

 E.g., Actian Vortex, Hive, Drill, Snowflake, etc.

 And/or JIT code generation

 Generate a separate program that executes (only) the exact query plan

 Compile the program (JiT compilation) and run on your data.

 E.g., Spark, Tableau/HyPer, MemSQL, etc.

Query Execution

8

 Design considerations for scalability, elasticity, fault-tolerance, good performance.

 Should we keep compute and storage tightly coupled?

 Separate tiers, different challenges at cloud-scale for cloud-data:

 Storage:

 Abstracting from the storage format

 Distribution and partitioning of data even more relevant at cloud-scale

 Data caching models across the (deep) storage hierarchy (cost/performance)

 Query execution:

 Distributed query execution: combine scale-out and scale-up

 Global resource-aware scheduling

 Distributed query optimization

 Service form factor

 Reserved-capacity services vs. serverless instances

Cloud-native warehouses

9

 There is no data locality

 To create elasticity, compute needs to be de-coupled from storage

 i.e., AWS S3 files are always stored remotely

 high latency (100-200ms) and slow bandwidth (20-125MB/s)

 Distribution and partitioning is very common

 Distribution – allows jobs to be parallelized

 Partitioning – partition-pruning, data lifecycle management

 Some locality can be created by caching

 Caching in memory (e.g., Spark)

 Caching on local ephemeral disk (e.g., DBIO cache in Databricks, Vertica EON, etc.)

 0.03ms latency, ~500MB/S bandwidth, ~500GB size (per core)

Data placement in the Cloud

10

Shared-nothing cloud data warehouse

11

 Shared nothing data warehouse

 dominant system architecture for high-

performance data warehousing.

 Scales well for star-schema queries

as very little bandwidth is required to join

 a small (broadcast) dimensions table with

 a large (partitioned) fact table.

 Elegant design with homogeneous nodes

Shared-nothing architecture

12

Disk Disk Disk Disk

DB DBDB DB

Network

Local

storage

Every query processor node (DB) has its own

local attached storage (disk).

Data is horizontally partitioned across the

processor nodes.

Each node is only responsible for the rows on

its own local disks

 Classic shared-nothing design with locally

attached storage

 The execution engine is ParAccel DBMS

 Classic MPP, JIT C++

 Leverages standard AWS services:

 EC2 + EBS + S3, Virtual Private Cloud

 Redshift cluster: Leader + Compute nodes

 Leader parses a query and builds an optimal

execution plan.

 Creates compiled code and distributes it to

the compute nodes for processing.

 Aggregates the results before returning the

result to the client.

Example: Amazon (AWS) Redshift

13

Redshift detailed architecture

14

The leader node:

 SQL end point. Connects to SQL client / BI

tools by JDBC/ODBC

 Stores metadata

 Query compilation

 Query optimization

 Coordinate parallel SQL processing

The compute node:

 Local, columnar storage

 Executes queries in parallel, by slices

 Handles load, back-up, restore

 Pricing: based on the compute node instance

and the number of nodes used.

 The leader distributes data to the slices and apportions workload to them.

 The number of slices per node depends on the node size.

 Within a node, Redshift can decide how to distribute data between the slices (or the user can specify

the distribution key, to better match the query’s joins and aggregations).

A Redshift Instance

15

NODE Slice 1 Slice 2

Each compute node has

dedicated CPU, memory and

locally attached disk storage.

Memory, storage, and data

partitioned among the slices.

NODE Slice 1 Slice 2

Leader

Hash and round-robin table

partitioning / distribution.

Within a slice

16

ID NAME AGE DATE

Columns stored in 1MB blocks.

Min and Max value of each

block retained in a zone map.

Rich collection of compression

options (RLE, dictionary, gzip, etc.)

Data stored in columns, sorted by:

• Compound sort key

• Interleaved sort key

(multidimensional sorting)

 Each 1MB block is replicated

on a different compute node

 Data blocks (1MB) are

also stored on S3

 S3 triply replicates each block

Fault tolerance

17

NODE Slice 1 Slice 2 NODE Slice 1 Slice 2

Leader

S3

 Assume node 1 fails:

 Option #1:

node 2 processes load until

node 1 is restored

 Option #2:

new node is instantiated

 node 3 processes

workload using data in S3

 until the local disks are

restored

Handling node failures

18

NODE Slice 1 Slice 2 NODE Slice 1 Slice 2

Leader

S3

 Highly successful cloud SaaS DW service

 Classic shared-nothing design

 Leverages S3 to handle node and disk failures

 Key strength:

 performance through use of local storage

 Key weakness:

 compute cannot be scaled independent of storage (and vice-versa)

Redshift summary

19

 Tightly couples compute and storage resources

 Heterogeneous workloads

 a system configuration that is ideal for bulk loading (high I/O bandwidth, light compute)

 is poor fit for complex queries (low I/O bandwidth, heavy compute).

 Membership changes

 if the set of nodes changes potentially a large volume of data needs to be reshuffled

 Online upgrades

 possible but very hard when everything is coupled and expected to be homogeneous.

 This makes it problematic to use it in the cloud setting

Drawbacks of shared-nothing architecture

20

Shared-storage architectures

Separating compute and storage

21

 Evolution of cloud-data warehouse architectures over the years

 Engines maintain state comprised of: cache, metadata, transaction log, and data

 The first step is decoupling of storage and compute – more flexible scaling

 Both layers can scale-up or down independently

 Storage is abundant and cheaper than compute

 User only pays for the compute needed to query a working subset of the data

Separating Compute and Storage

22

Caches

Metadata

Transaction Log

Data

Caches

Metadata

Transaction Log

Data

Caches

Metadata

Transaction Log

Data

On-premise

architecture

Storage-separate

architecture

State-separate

architecture

 Snowflake separates storage and compute.

 two loosely coupled, independently scalable services.

 Compute

 handled by a proprietary shared-nothing execution engine.

 highly elastic.

 Storage

 handled by Amazon S3, Azure Blob storage, or Google Cloud storage.

 dynamically cached on local storage clusters used to execute the queries

Example: Snowflake

23

Snowflake Architecture

24

img src: Dageville et al. (2016) The Snowflake Elastic Data Warehouse. SIGMOD

The Brain: Key data

management services.

The Muscle: Shared-nothing

execution engine (virtual

warehouse)

The Storage: Shared-storage

for data and query results.

 Tables are horizontally partitioned into large immutable files

 Similar to blocks or pages in a traditional database system

 Within each file:

 The values of each attribute (column) are grouped together

 Heavily compressed (e.g., gzip, RLE, etc.)

 For accelerated query processing:

 MinMax value of each column of each file of each table are

kept in a catalog

 used for pruning at runtime.

Table storage

25

ID

NAME

AGE

ID

VALUES

NAME

VALUES

AGE

VALUES

 Dynamically created cluster of EC2 instances

 Pure compute resources

 Can be created, destroyed, and resized at any time

 Local disk cache file headers and table columns

 Three sizing mechanisms:

 Number of EC2 instances

 Size of each instance (#cores, I/O capacity)

Virtual warehouses

26

Virtual Warehouse

Cluster of

EC2 instances

Local data

cache layer

 Each query mapped to exactly one virtual warehouse

 Each VW may run multiple queries in parallel

 Every VW has access to the same shared table without needed to copy data

 Queries against the same database can be given the resources to meet their needs

 This flexibility is not feasible with shared-nothing approach (e.g., in Redshift)

Separate compute and storage

27

VW Virtual Warehouse

 Designed for the cloud

 Compute and storage independently scalable

 Data stored in S3/Azure/GFS but with own closed format (you need to load/trasform)

 Virtual warehouses composed of clusters of compute (AWS EC2) instances

 Queries can be given exactly the compute resources they need

 Query execution is still statefull

 and is not “serverless”

 No management knobs

 No indices, no create/update stats, no distribution keys, etc.

 Can directly query unstructured data (JSON)

Snowflake summary

28

Stateless shared-storage architectures

Separating compute and state

29

 In stateful architectures, state of in-flight transaction is stored in the compute node and is not hardened

into persistent storage until the transaction commits.

 When a compute node fails, the state of non-committed transaction is lost  fail the transaction

 Resilience to compute node failure and elastic assignment of data to compute

are not possible in stateful architectures  the need to move to stateless architectures.

Separating Compute and Storage / State

30

Caches

Metadata

Transaction Log

Data

Caches

Metadata

Transaction Log

Data

On-premise

architecture

Storage-separate

architecture

Caches

Metadata

Transaction Log

Data

State-separate

architecture

 Compute nodes should not hold any state information

 Enables partial restart of query execution in the event of compute node failures

and online changes of the cluster topology

Stateless compute architectures

31

Caches

Metadata

Transaction Log

Data

State-separate

architecture

 Caches need to be as close to the compute as possible

 Can be lazily reconstructed from persistent storage

 No need to be decoupled from compute

 All data, transactional logs and metadata need to be externalized

Example: POLARIS

32

 Separation of storage and compute

 Compute done by Polaris pools

 Shared centralized services

 Metadata and Transactions

 Stateless architecture within a pool

 Data stored durably in remote storage

 Metadata and transactional log is offloaded to

centralized services (built for high availability

and performance)

 Multiple pools can transactionally access the

same logical database.

img src: Aguilar-Saborit et al. (2020) POLARIS: The Distributed SQL Engine in Azure Synapse. VLDB

 Data cells – abstraction from the underlying

data format and storage system

 Converging data lakes and warehouses

 Hash-based distribution

 To enable easy and balanced distribution

of data to compute (e.g., Polaris pool).

 Hash-distribution h(r) is a system-defined

function applied to (a user-defined composite

key) r that returns the hash bucket

(distribution) that r belongs to – mapping

cells to compute nodes.

 The Partitioning function p(r) is useful for

partition range pruning when range or

equality predicates are defined over r.

Storage layer considerations

33

img src: Aguilar-Saborit et al. (2020) POLARIS:

The Distributed SQL Engine in Azure Synapse. VLDB

 All incoming queries are compiled in two phases:

 Stage 1 uses SQL server cascades query optimizer

to generate the logical search space

 Contains all logical equivalent alternative plans

to execute a query

 Stage 2 does distributed cost-based query optimization

to enumerate all physical distributed implementations

of these logical query plans.

 Picks one with the least estimate cost

(taking data movement cost into account).

Distributed query processing

34

 Task 𝑇𝑖 – physical execution of an operator 𝐸 on the 𝑖𝑡ℎ

hash-distribution of its inputs.

 Tasks are instantiated templates of (the code executing)

expression 𝐸 that run in parallel across 𝑁

hash-distributions of the inputs.

 A task has three components:

 Inputs: collection of cells for each input’s data partition

stored either in local or remote storage

 Task template: code to execute on the compute nodes,

representing the operator expression 𝐸.



Output: collection of cells produced by the task. Used

either input for another task or the final result.

Distributed query processing II

35

 Model the distribute query execution of queries via hierarchical state machines

 Execution of the query task DAG is top-down

in topological sort-order.

 State machines to have fine-grained control

at task-level and define a predictable model

for recovering from failures.

 States and transitions are logged at each

step – necessary for debugging and resuming

after failover.

 Low resource overhead for tracking

concurrent execution of many queries.

Task organization

36

 The separation of state and compute enable offering different service form-factors:

 Serverless, capacity reservations, multiple pools.

 Data cell abstraction for efficient processing of diverse collection of data formats and storage systems

 Combining scale-up and scale-out

 Scale-up: intra-partition parallelism, vectorized processing, columnar storage, careful control flow,

cache-hierarchy optimizations, deep enhancements to query optimization, etc.

 Fine-grained scale-out: distributed query processing inspired by big data query execution frameworks

 Elastic query processing via

 Separation of state and compute

 Flexible abstraction of datasets as cells

 Task inputs defined in terms of cells

 Fine-grained orchestration of tasks using state machines.

POLARIS Summary

37

 Architecture of the analytical database system

 Understand the basic design areas (storage, query processing, system)

 Column storage, compression

 Vectorization/JIT, MinMax pushdown

 Clustering, partitioning/distribution, update infrastructure

 Cloud Database Systems

 Motivation, Characteristics – differences to on-premise deployments

 Evolving the architecture of DW for the cloud environment

 Shared-nothing, shared-storage, stateless query processing

 Overview of some of the popular systems

 Redshift, Snowflake, POLARIS

Summary

38

The material covered in this class is mainly based on:

 Slides from “Big Data for Data Science” from Prof. Peter Boncz, CWI (link)

Papers:

 Dageville et al. The Snowflake Elastic Data Warehouse SIGMOD 2016

 Aguilar-Saborit et a.. POLARIS: The Distributed SQL Engine in Azure Synapse. VLDB 2020

 Pavlo et al. A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD 2009

 Vuppalapati et al. Building an Elastic Query Engine on Disaggregated Storage. NSDI 2020

 Gupta et al. Amazon Redshift and the Case for Simpler Data Warehouses. SIGMOD 2015

 AWS Redshift: Data warehouse system architecture (link)

Further reading:

 Tan et al. Choosing a Cloud DBMS: Architectures and Tradeoffs. VLDB 2019

 Redshift Spectrum (link)

 Redshift AQUA (link)

 Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web-Scale. VLDB 2019

References

39

https://homepages.cwi.nl/~boncz/bigdatacourse/05-SQL on Big Data.pdf
https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html
https://docs.aws.amazon.com/redshift/latest/dg/c-using-spectrum.html#c-spectrum-overview
https://pages.awscloud.com/AQUA_Preview.html

