
1

Cloud-Based Data Processing

Consensus

Jana Giceva



 Total order broadcast is very useful for state machine replication.

 Can implement total order broadcast by sending all messages via a single leader.

 Problem: what if the leader crashes / becomes unavailable?

 Manual failover:

a human operator chooses a new leader, and reconfigures each node to use a new leader.

Used in many databases. Fine for planned maintenance.

Unplanned outage? Humans are slow, may take a long time until the system recovers.

 Can we automatically choose a new leader?

Fault-tolerant total order broadcast

2



 Traditional formulation of consensus:

several nodes want to come to an agreement about a single value.

 In context of total order broadcast – this value is the next message to be delivered.

 Once one node decides on a certain message order, all nodes will decide the same order.

 A consensus algorithm must satisfy the following properties:

 Uniform agreement – no two nodes decide differently

 Integrity – no node decides twice

 Validity – if a node decides value v, then v was proposed by some node.

 Termination – every node that does not crash, eventually decides some value.

 Common consensus algorithms:

 Paxos: single-value consensus

 Multi-Paxos: generalization to total order broadcast

 Raft, Viewstampted Replication, Zab: FIFO-total order broadcast by default

Consensus and total order broadcast

3



 Paxos, Raft, etc. assume a partially synchronous, crash-recovery system model.

 Why not asynchronous?

 FLP result (Fischer, Lynch, Paterson):

There is no deterministic consensus algorithm that is guaranteed to terminate in an asynchronous 

crash-stop system model.

 Paxos, Raft, etc. use clocks only used for timeouts/failure detector to ensure progress. Safety 

(correctness) does not depend on timing.

 There are also consensus algorithms for a partially synchronous Byzantine system model 

(used in Blockchain).

Consensus system models

4



 Leader election

 Multi-Paxos, Raft, etc. use a leader to sequence messages.

 Use a failure detector (timeout) to determine suspected crash or unavailability of a leader.

 On suspected leader crash, elect a new one.

 Prevent two leaders at the same time (“split brain” problem).

 Ensure <= 1 leader per term:

 Term is incremented every time a leader election is started

 A node can only vote once per term

 Require a quorum of nodes to elect a leader in a term

Core of consensus: Leader

5



 Can guarantee unique leader per term.

 Cannot prevent having multiple leaders from different terms.

Example: node 1 is leader in term 𝑡, but due to network partitioning, it can no longer communicate

with nodes 2 and 3. 

Nodes 2 and 3 may elect a new leader in term 𝑡 + 1.

Node 1 may not even know that a new leader has been elected!

Can we guarantee there is only one leader?

6



 For every decision (message to deliver), the leader must first get acknowledgement from a quorum.

Checking if a leader has been voted out.

7



The Raft consensus algorithm



Node state transitions in Raft

9



 http://thesecretlivesofdata.com/raft/

Graphical visualization of the Raft protocol

10

http://thesecretlivesofdata.com/raft/


 https://raft.github.io/

Reference for paper and pseudo-code

11

https://raft.github.io/


 Consensus brings a list of safety properties to systems where everything else is uncertain:

 Support for agreement, integrity and validity, and fault-tolerant!

 But that all comes at a cost:

 Synchronous-based replication

 Much worse performance than asynchronous 

 Strict quorum majority to operate

 Needs a minimum of 3 nodes to tolerate 1 failure, or minimum of 5 nodes to tolerate 2 failures

 Static membership algorithm

 Cannot simply add or remove nodes in the cluster

 Relies on timeouts to detect failed nodes

 Known to have issues for highly variable network delays

Limitations of consensus

12



Case study: ZooKeeper

Membership and Coordination Services



The material covered in this class is mainly based on:

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and 

Maintainable Systems” by Martin Kleppmann (Chapter 9) (link)

 Slides from “Distributed Systems” course from University of Cambridge (link)

 Raft (https://raft.github.io/)

References

32

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://martin.kleppmann.com/2020/11/18/distributed-systems-and-elliptic-curves.html
https://raft.github.io/

