
1

Cloud-Based Data Processing

Distributed Data – Part 2

Jana Giceva



 Identify workloads and usage requirements 

 e.g., availability, scalability, data consistency, disaster recovery

 Identify critical components and paths

 Establish availability metrics

 mean time to recovery (MTTR) and mean time between failures (MTBF)

 Use these to determine when to add redundancy and to determine the SLAs to customers

 Define the availability targets 

Reliable cloud application

2



 Availability = uptime = fraction of time that a service is functioning correctly

 “two nines” = 99% up = down 3.7 days/year

 “three nines” = 99.9% up = down 8.8 hours/year

 “four nines” = 99.99% up = down 53 minutes/year

 “five nines” = 99.999% up = down 5.3 minutes/year

 Service-Level Objective (SLO):

percentage of requests that need to return a correct response time within a specified timeout, as 

measured by the client over a certain period of time.

e.g., “99.9% of requests in a day get a response in 200 ms”

 Service-Level Agreement (SLA):

contract specifying some SLO, penalties for violation

Availability

3



 Do a failure mode analysis (FMA)

identify the types of failures your application may experience and possible recovery strategies

 Create a redundancy plan based on the business needs and factors

 Design for scalability and use load-balancing to distribute requests

 Implement resiliency strategy

 Manage the data: store, back-up and replicate data

 Choose the replication method

 Document the failover and failback process

 Plan for data recovery

 Efficient monitoring and fault-recovery

Reliable cloud application II

4



Fault-tolerance



 Failure: system as a whole is not working

 Fault: some part of the system is not working

 Node fault – crash (crash-stop/crash-recovery), deviating from algorithm (Byzantine)

 Network fault – dropping or significantly delaying messages

 Fault tolerance: 

System as a whole continues working, despite faults.

(some maximum number of faults assumed)

 Single point of failure (SPOF):

node/network link whose fault leads to a failure

Terminology

6



 Failure detector: 

Algorithm that detects whether another node is faulty

 Perfect failure detector: 

labels a node as faulty if and only if it has crashed

 Typical implementation for crash-stop/crash-recovery: 

send message, await response, label node as crashed if no reply within some timeout

 Problem: cannot tell the different between 

 a crashed node, 

 temporarily unresponsive node, 

 lost message and 

 delayed message

Failure detectors

7



 No shared memory, but message passing over an unreliable network with variable delays

 System may suffer from partial failures

 Each process may experience unreliable processing pauses

 Machines have unreliable clocks

 The truth is defined by the majority  requires reaching a quorum.

A reliable system from unreliable components

8



Unreliable networks and 

Models of distributed systems 



 Datacenters internal networks 

are asynchronous:

 Your request may be lost

 Your request may be waiting in a 

queue and will be delivered later

 The remote node may have failed

 The remote node may have temporarily stopped responding, but will start responding again later

 The remote node may have processed your request, but the response has been lost

 The remote node may have processed your request, but the response has been delayed

 Typical we handle these problems by sending a response message, but even that may be lost

 Supported with a timeout: when to give up on waiting and assume the response is not going to arrive. 

Unreliable components (network)

10



 Need to automatically detect faulty nodes:

 A load balancer needs to stop sending requests to a node that is dead

 A distributed database with a single-leader replication, if the leader fails, 

one of the followers needs to be promoted to be a leader

 Timeouts and unbounded delays

 How long should a timeout be?

e.g., a short timeout detects faults faster, but can declare a node dead prematurely and cause a domino

 Challenge: asynchronous networks (with unbounded delivery delays) and 

lack of guarantee that each server can handle requests within some maximum time.

 Network congestion and queuing

 The variability of packet delays is most often due to queueing

 Especially visible when the system is close to its maximum capacity

Detecting faults

11



When designing a distributed algorithm, we use a system model to specify 

our assumptions about what faults may occur.

 Capture assumptions in a system model consisting of:

 Network behavior (e.g., message loss)

 Node behavior (e.g., crashes)

 Timing behavior (e.g., latency).

 There is a specific choice of models for each of these parts.

System models

12



 No network is perfectly reliable 

 e.g., accidentally unplug the wrong cable, sharks and cows can cause damage and interruption to long-

distance networks, or a network may be temporarily overloaded (e.g., by a DoS attack).

 Assume a bi-directional point-to-point communication between two nodes, with one of:

 Reliable (perfect) links

a message is received if and only if it is sent. Messages may be reordered.

 Fair-loss links:

a message may be lost, duplicated or reordered. By retrying, a message eventually gets through. 

 Arbitrary links (active adversary):

a malicious adversary may interfere with messages (spy, modify, drop, spoor, replay). 

 Network partition some links dropping / delaying all messages for an extended period of time.

System model: network behavior

13



Each node executes a specified algorithm, assuming one of the following:

 Crash-stop (fail-stop):

a node is faulty if it crashes (at any moment). After crashing, it stops executing forever.

 Crash-recovery (fail-recovery):

a node may crash at any moment, losing its in-memory state. It may resume executing, sometime later.

 Byzantine (fail-arbitrary):

a node is faulty if it deviates from the algorithm. Faulty nodes may do anything, including crashing or 

malicious behavior.

A node that is not faulty, is called correct.

System model: node behavior

14



Assume one of the following for the network and nodes:

 Synchronous:

message latency no greater than a known upper bound.

Nodes execute algorithm at a known speed.

 Partially synchronous:

The system is asynchronous for some finite (but unknown) periods of time, synchronous otherwise.

 Asynchronous:

Messages may be delayed arbitrarily. Nodes can pause execution arbitrarily. No timing guarantees at all.

System model: synchrony (timing) assumptions

15



 Networks usually have quite predictable latency, which can occasionally increase:

 Message loss requiring retry

 Congestion/contention causing queuing

 Network/route reconfiguration

 Nodes usually execute code at a predictable speed, with occasional pauses:

 OS scheduling issues (e.g., priority inversion)

 Stop-the-world garbage collection pauses

 Page faults, swap, thrashing

 Real time operating systems (RTOS) provide scheduling guarantees, 

but most distributed systems do not use RTOS.

Violations of synchrony in practice

16



For each of the three parts, pick one:

 Network:

reliable, fair-loss, or arbitrary

 Nodes:

crash-stop, crash-recovery, or Byzantine

 Timing:

synchronous, partially-synchronous, or asynchronous

This is the basis for any distributed algorithm. If your assumptions are wrong, all bets are off!

System models summary

17



Unreliability of clocks



 Distributed systems often need to measure time, e.g.:

 Schedulers, timeouts, failure detectors, retry timers,

 Performance measurements, statistics, profiling

 Log files and databases: record when an event occurred

 Data with time-limited validity (e.g., cache entries)

 Determine order of events across several nodes

 We distinguish two types of clocks:

 Physical clocks: count number of seconds elapsed

 Logical clocks: count events, e.g., messages sent

Clocks and time in distributed systems

19



 Quartz clocks (wristwatch, computer and phones, etc.) are cheap but not totally accurate.

 Quartz clock error: drift

 One clock runs slightly faster, another slower

 Drift is measured in parts per million (ppm). 

1 ppm = 1 microsecond/second = 86 ms/day = 32s/year

 Most computer clocks correct within 50 ppm

 For greater accuracy, atomic clocks are use.

 Leap seconds – to keep the UTC and TAI in sync (linked to the rotation of earth)

 Computers and time

 Unix time: number of seconds since 1 January 1970 (epoch) – not counting leap seconds

 ISO 8601: year, month, day, hour, minute, second and timezone offset relative to UTC

 To be correct, software that works with timestamps needs to know about leap seconds.

Physical clocks

20



 Computers track physical time/UTC with a quartz clock

 Due to clock drift, clock error gradually increases.

 Clock skew: difference between two clocks at a point in time

 Solution: periodically get the current time from a server that has a more accurate time source 

(atomic clock or GPS receiver)

 Protocols: Network Time Protocol (NTP), Precision Time Protocol (PTP)

 Make multiple requests to the same server, use statistics to 

reduce error due to variations in network latency

 Reduces clock skew to a few milliseconds in good network conditions.

Clock synchronization

21



// BAD

long startTime = System.currentTimeMillis();

doSomething(); 

long endTime = System.currentTimeMillis();

long elapsedMillis = endTime – startTime;

// elapsedMillis may be negative!

// GOOD

long startTime = System.nanoTime();

doSomething();

long endTime = System.nanoTime();

long elapsedNanos = endTime – startTime;

// elapsedNanos is always >= 0

Monotonic and time-of-day clocks

22

 NTP client steps the clock during this



 Time-of-day clock:

 Time since a fixed date (e.g., 1 January 1970 epoch)

 May suddenly move forwards or backwards (NTP stepping), subject to leap second adjustments

 Timestamps can be compared across nodes (if synced)

 Java: System.curretTimeMillis()

 Linus: clock_gettime(CLOCK_REALTIME)

 Monotonic clock:

 Time since arbitrary point (e.g., when the machine booted up)

 Always moves forward at near constant speed

 Good for measuring elapsed time on a single node

 Java: System.nanoTime():

 Linux: clock_gettime(CLOCK_MONOTONIC)

Monotonic and time-of-day clocks

23



 When getting the time from a server, the uncertainty is based on:

 the expected quartz drift since your last sync, 

 the server’s uncertainty, 

 and the network round-trip time to the server.

e.g., A system may be 90% confident that the time now is between 10.3 and 10.5 seconds past the minute.

 Most systems do not expose this uncertainty 

Notable exception: Google’s TrueTime API, which explicitly reports the confidence interval on the local clock.

 When you ask it for the current time, you get back two values [earliest, latest], which are the earliest 

possible and the latest possible timestamp.

 Used in Spanner (to be covered in 2 weeks).

Clock readings should have a confidence interval

24



Ordering of messages

25



 Physical clock: count number of seconds elapsed

 Logical clock: count number of events occurred

Physical timestamps: useful for many things, but may be inconsistent with causality.

Logical clocks: designed to capture causal dependencies 

𝑒1 → 𝑒2
yields

(𝑇 𝑒1 < 𝑇 𝑒2 )

Distributed systems/algorithms typically cover two types of logical clocks:

 Lamport clocks

 Vector clocks

Logical vs. physical clocks

26



 When we want to detect concurrent events, we use vector clocks:

 Assume n nodes in the system, 𝑁 = < 𝑁1, 𝑁2, … , 𝑁𝑛 >

 Vector timestamp of event a is 𝑉(𝑎) =< 𝑡1, 𝑡2, … , 𝑡𝑛 >

 𝑡𝑖 , is number of events observed by node 𝑁𝑖

 Each node has a current vector timestamp 𝑇

 On event at node 𝑁𝑖, increment vector element 𝑇[𝑖]

 Attach current vector timestamp to each message

 Recipient merges message vector into its logical vector

Vector clocks

27



 Assuming the vector of nodes is 

𝑁 = 𝐴,𝐵, 𝐶

 The vector timestamp of an event 𝑒 represents a set of events, 𝑒 and 

its causal dependencies: 𝑒 ∪ a a → 𝑒}

 For example, 2,2,0 represents the first two events from 𝐴, the first two events from 𝐵,

and no events from 𝐶

Vector clocks example

28



 In a distributed system, the truth is defined by the majority

 A single node cannot trust its own judgement of a situation

 Many distributed algorithms rely on a quorum, i.e., voting among the nodes.

 Including when to declare a node as dead

 Quorums are especially important for our upcoming discussion on consensus (next week).

Majority decides the truth

29



Broadcast protocols

30



 Broadcast (multicast) is a group communication:

 One node sends message, all nodes in the group deliver it

 Set of group members may be fixed (static) or dynamic

 If one node is faulty, remaining group members carry on

 Build upon system models:

 Can be best-effort (may drop messages) or reliable (non-faulty nodes deliver every message,

by retransmitting dropped messages).

 Asynchronous/partially synchronous timing model  no upper bound on message latency

Broadcast protocols

31



 Assume network provides point-to-point send/receive.

 After broadcast algorithm receives a message from the network, it may buffer/queue it

before delivering to the application.

Receiving versus delivering

32

Application Application

Broadcast algorithm

(middleware)

Network

Broadcast algorithm

(middleware)

Broadcast algorithm

(middleware)

broadcast deliver

send receive send receive

Node A Node B



 FIFO broadcast

if 𝑚1 and 𝑚2 are broadcast by the same node, and broadcast(𝑚1) → broadcast (𝑚2), 

then 𝑚1 must be delivered before 𝑚2

 Causal broadcast

if broadcast(𝑚1) → broadcast (𝑚2), then 𝑚1 must be delivered before 𝑚2

 Total order broadcast

if 𝑚1 is delivered before 𝑚2 on one node, then 𝑚1 must be delivered before 𝑚2 on all nodes

 FIFO-total order broadcast

combination of FIFO broadcast and total order broadcast

Forms of reliable broadcast

33



 Messages sent by the same node must 

be delivered in the order they were sent.

 Messages sent by different nodes can be 

delivered in any order.

 Valid orders: (𝑚2, 𝑚1, 𝑚3) or (𝑚1, 𝑚2, 𝑚3)

or (𝑚1, 𝑚3, 𝑚2)

FIFO broadcast

34



 Causally related messages must be

delivered in causal order.

 Concurrent messages can be delivered

in any order.

 Here:

broadcast(𝑚1) → broadcast (𝑚2) and

broadcast(𝑚1) → broadcast (𝑚3)

→

valid orders are 

(𝑚1, 𝑚2, 𝑚3) or (𝑚1, 𝑚3, 𝑚2)

Causal broadcast

35



 All nodes must deliver messages

in the same order 

here (𝑚1, 𝑚2, 𝑚3)

 This includes a node’s delivery to itself.

Total order broadcast

36



 Single leader approach:

 One node is designated as a leader 

 To broadcast message, send it to the leader: leader broadcasts it via FIFO broadcast

 Problem: leader crashes  no more messages delivered

 Changing the leader safely is difficult

 Logical clocks approach:

 Attach a vector timestamp to every message

 Deliver messages in total order of timestamps

 Problem: how do you know if you have seen all messages with timestamp <T?

 Need to use FIFO links and wait for message with timestamp >=T from every node.

 In both approaches a crash from a single node can stop all other nodes from 

being able to deliver messages. 

 Need a fault-tolerant total order broadcast.

Total order broadcast algorithms

37



 Last week’s replication was “implemented” using the best-effort broadcast:

a client broadcasts every read or write to all of the replicas, 

but the protocol is unreliable (requests may be lost) and provides no ordering guarantees.

 Replication with total order broadcast: 

every node delivers the same messages in the same order

 State machine replication (SMR):

 FIFO-total order broadcast every update to all replicas

 Replica delivers update message: apply it to own state

 Applying an update is deterministic

 Replica is a state machine: 

starts in a fixed initial state, 

goes through same sequence of state transitions in the same order 

 all replicas end up in the same state

Replication using broadcast

38



on request to perform update u do

send u via FIFO-total order broadcast

end on

on delivering u through FIFO-total order broadcast do

update state using arbitrary deterministic logic

end on

 Closely related ideas:

 Serializable transactions (execute in delivery order)

 Blockchains, distributed ledgers, smart contracts

 Limitations:

 Cannot update state immediately, have to wait for delivery through broadcast

 Need fault-tolerant total order broadcast (next week)!

State machine replication

39



 Leader database replica, ensures total order broadcast.

 Follower F applies the transaction log in commit order.

Database leader replication

40



 State machine replication uses (FIFO-) total order broadcast.

 Can we use weaker forms of broadcast too?

 If replica state updates are commutative, replicas can process updates in different orders and still end up 

in the same state.

 Updates 𝑓 and 𝑔 are commutative if 𝑓 𝑔 𝑥 = 𝑔 𝑓 𝑥

Replication using causal (and weaker) broadcast

41

broadcast assumptions about state update function

Total order Deterministic (SMR)

Causal Deterministic, concurrent updates commute

Reliable Deterministic, all updates commute

Best-effort Deterministic, commutative, idempotent, tolerates message loss



The material covered in this class is mainly based on:

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and 

Maintainable Systems” by Martin Kleppmann (Chapters 8 and part of 9) (link)

 Slides from “Distributed Systems” course from University of Cambridge (link)

Some information about application-level design were based on material from:

 Microsoft’s Azure Application Architecture Guide 

 Design Reliable Applications (link)

 Design for self-healing (link)

References

42

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://martin.kleppmann.com/2020/11/18/distributed-systems-and-elliptic-curves.html
https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/overview
https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/self-healing

