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Amdahl’s Law

• suppose we parallelize an algorithm using n cores and p is the proportion of the task that
can be parallelized (1 − p cannot be parallelized)

• the speedup of the algorithm is
1

(1−p)+ p
n

• assuming infinite parallelism, the speedup is
1

(1−p)

• for example, if 90% of the work is parallelized, the maximum speedup is only 10
• one should make sure that every phase of one’s algorithm that depends on the input data

size is parallelized
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Parallelization Constructs and Libraries

• low-level: C++ threads, pthreads (threads, mutexes, barriers, condition variables)
• parallel patterns: parallel reduce, parallel for, fork/join parallelism
• parallel frameworks: TBB, OpenMP, Cilk Plus
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Intel Thread Building Blocks

• Open Source library for parallelism and concurrency
• fairly nice for prototyping
• manages a pool of worker threads
• implements work stealing
• provides high-level abstractions
• enables nested parallelism
• large systems (e.g., database systems) will have their own framework
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Thread-Local Storage

• in C++ variables can be annotated as thread_local (each thread has its own copy)
• however, sometimes it would be convenient to access the thread-local state of other threads
• tbb::enumerable_thread_specific allows this
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Parallel Reduce

tbb :: parallel_reduce (
tbb :: blocked_range <uint64_t >(0, n), // range
0ull , // identity
[&]( const tbb :: blocked_range <uint64_t >& r, uint64_t init) {

// accumulate
for ( uint64_t i=r.begin (); i!=r.end (); i++)

init += array[i];
return init;

},
[] ( uint64_t x, uint64_t y) { return x+y; }); // combine

tbb :: blocked_range (Value begin , Value end , size_type grainsize =1);
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Parallel For

tbb :: parallel_for (tbb :: blocked_range <uint64_t >(0, n),
[&]( const tbb :: blocked_range <uint64_t >& r) {

for ( uint64_t i=r.begin (); i!=r.end (); i++)
array[i] *= 2;

});
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Partitioners

• parallel_for and parallel_reduce split the given range to enable parallel execution
• there are multiple builtin partitioners:

I static_partitioner splits work equally among threads up-front (no dynamic work stealing)
I simple_partitioner splits the range as much as possible (e.g., until grainsize is reached)
I auto_partitioner heuristic similar to simple_partitioner, but tries to avoid creating too

many ranges (default)
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Fork/Join Parallelism

• sometimes the amount of work to parallelize is not known upfront
• fork/join allows one to perform work on other threads (“fork”), and then to wait until these

tasks are finished (“join”)
• often recursive parallelism structure
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Naive Merge Sort with Fork/Join (TBB)

const ptrdiff_t limit = 1024;

template <class Iter >
void merge_sort (Iter first , Iter last) {

if (last - first > limit) {
Iter middle = first + (last - first) / 2;
tbb :: task_group g; // alternative : tbb :: parallel_invoke
g.run ([&]{ merge_sort (first , middle ); } );
merge_sort (middle , last );
g.wait ();
std :: inplace_merge (first , middle , last );

} else {
merge_sort_serial (first , last );

}
}
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Analysis

• What is the speedup for sorting n elements with infinite cores?
• serial execution: log2(n) · n
• rough upper bound (using Amdahl’s law):

I the final merge is serial: n
I lower bound for fraction of serial part n

log2(n)·n = 1
log2(n)

I using Amdahl’s law the maximum speedup is 1
1

log2(n)
= log2(n)

I for example, if n = 220 the upper bound is log2(n) = 20
• tighter upper bound:

I parallel execution:
∑log2(n)−1

i=0
n
2i = n + n

2 + n
4 + · · · < 2n

I for example, if n = 220 the upper bound is
20n
2n = 10

• (both analyses assume that each level recursion level takes the same amount of time)
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Speedup, n = 220
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Speedup with 10 Threads
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Parallelization Overhead, n = 220
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Parallel Merge (1)

template < typename It >
void parallelMerge (It begin1 , It end1 , It begin2 , It end2 , It out) {

tbb :: parallel_for ( ParallelMergeRange <It >( begin1 , end1 , begin2 , end2 , out),
[&]( ParallelMergeRange <It >& r) {

std :: merge(r.begin1 , r.end1 , r.begin2 , r.end2 , r.out ); },
tbb :: simple_partitioner ());

}

template < typename It >
struct ParallelMergeRange { // TBB range concept

It begin1 , end1 , begin2 , end2 , out;

bool empty () const { return (end1 - begin1 ) + (end2 - begin2 )==0; }

bool is_divisible () const {
return std :: min(end1 -begin1 , end2 - begin2 ) > limit; }

ParallelMergeRange (It begin1_ , It end1_ , It begin2_ , It end2_ , It out_) :
begin1 ( begin1_ ), end1(end1_), begin2 ( begin2_ ), end2(end2_), out(out_) {}
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Parallel Merge (2)

// Splitting constructor ( splits r into two subranges )
ParallelMergeRange ( ParallelMergeRange & r, tbb :: split) {

if ((r.end1 -r. begin1 ) < (r.end2 -r. begin2 )) {
// first range should be the larger one
std :: swap(r.begin1 , r. begin2 );
std :: swap(r.end1 , r.end2 );

}
It m1 = r. begin1 + (r.end1 -r. begin1 )/2;
It m2 = std :: lower_bound (r.begin2 , r.end2 , *m1);
begin1 = m1;
begin2 = m2;
end1 = r.end1;
end2 = r.end2;
out = r.out + (m1 -r. begin1 ) + (m2 -r. begin2 );
r.end1 = m1;
r.end2 = m2;

}
}; // struct ParallelMergeRange
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Parallel Out-Of-Place Merge Sort

template <class It >
void parallelMergeSort (It first , It last , It out , bool inplace =false) {

if ((last -first) < limit) {
merge_sort_serial (first , last );
if (! inplace )

std :: move(first , last , out );
} else {

It mid = first + (last -first )/2;
It outMid = out + (mid -first );
It outLast = out + (last -first );
tbb :: parallel_invoke (

[&]() { parallelMergeSort (first , mid , out , ! inplace ); },
[&]() { parallelMergeSort (mid , last , outMid , ! inplace ); });

if ( inplace )
parallelMerge (out , outMid , outMid , outLast , first );

else
parallelMerge (first , mid , mid , last , out );

}
}
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Scalability, n = 220
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HyPer’s Parallel Merge Sort
1. divide input data statically, each thread sorts its fraction
2. determine separators, compute output positions (prefix sums)
3. merge into output array
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Pitfalls in Parallel Code

• non-scalable algorithm
I re-think algorithm

• load imbalance
I break work into smaller tasks, dynamically schedule these between threads

• task overhead: managing tasks takes more time than the actual work
I set a minimum per-thread tasks size (not too small, not to large)
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Volcano-Style Parallelism

• plan-driven approach:
I optimizer statically determines at query compile time how many threads should run
I instantiates one query operator plan for each thread
I connects these with exchange operators, which encapsulate parallelism and manage threads

• Elegant model which is used by many systems
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Volcano-Style Parallelism (2)

+ operators are largely oblivious to parallelism
− static work partitioning can cause load imbalances
− degree of parallelism cannot easily be changed mid-query
− overhead:

I thread oversubscription causes context switching
I hash re-partitioning often does not pay off
I exchange operators create additional copies of the tuples
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Morsel-Driven Query Execution (1)
• break input into constant-sized work units (“morsels”)
• dispatcher assigns morsels to worker threads
• # worker threads = # hardware threads
• operators are designed for parallel execution
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Pipeplines

• each pipeline is parallelized individually using all threads
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Pipeplines
• each pipeline is parallelized individually using all threads
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Pipeplines
• each pipeline is parallelized individually using all threads
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Pipeplines

• each pipeline is parallelized individually using all threads
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Parallel Hash Table Construction
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Hash Tagging

• unused bits in pointers act as a cheap bloom filter
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Aggregation/Group By

• parallel aggregation is one of the most difficult relational operators
• main challenge: behaves very differently depending on whether there are few or many

distinct keys
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Window Functions: Semantics
select location, time, avg(value) over

(partition by location
order by time
range between interval ’2’ day preceding

and interval ’1’ day following)
from measurement

order by

partition by

frame
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Window Functions: Semantics
hash partitioning (thread-local)

thread 1 thread 2

combine hash groups

3.1. inter-partition parallelism

3.2. intra-partition parallelism

sort/evaluation
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