Query Optimization: Exercise Session 4

Bernhard Radke

November 13, 2017

Lecture Evaluation

- Register for the course in TUMonline
- Evaluation will be done in the lecture on December 4
- Bring your laptop

Homework

Exercise 1

select s2.name
from studenten $s 1$, hoeren h1, hoeren h2, studenten s2
where s1.name='Schopenhauer' and s1.matrnr=h1.matrnr and h1.vorlnr=h2.vorlnr and h2.matrnr=s2.matrnr and h1.matrnr<>h2.matrnr

$$
\begin{aligned}
& \text { name }=\text { 'Schopenhauer' }
\end{aligned}
$$

$$
\begin{aligned}
& \left.s 2 \xrightarrow{\text { s2.matrnr }=h 2 . \text { matrnr }}\right|_{\text {2 }} \\
& \left.s 2 \xrightarrow{\text { s2.matrnr }=h 2 . \text { matrnr }}\right|_{\text {2 }} \\
& s 2 \xrightarrow{\text { s2.matrnr }=\text { h2.matrnr }} \overbrace{2} \begin{array}{l}
\text { h1.vorlnr }=h 2 . \text { vorlnr } \wedge \\
\text { h1.matrnr } \neq h 2 . \text { matrnr }
\end{array} \\
& \text { h1 } \\
& \text { h1.vorlnr = h2.vorlnr^ } \\
& \text { h1.matrnr } \neq \text { h2.matrnr } \\
& \text { h2 }
\end{aligned}
$$

Exercise 2

- When is a cross product beneficial?
- When is a bushy tree beneficial?

Exercise 3

Please attach the code to your submission email!

Join Ordering

Join Tree

Query Graph

```
select *
from R1, R2, R3, R4
where R1.a=R2.b
    and R2.c=R3.d
    and R3.e=R4.f
```

```
select *
from R1, R2, R3, R4
where R1.a=R2.b
    and R2.c=R3.d
    and R3.e=R4.f
    and R4.g=R1.h
```

```
select *
from R1, R2, R3, R4
where R1.a=R2.b
    and R1.c=R3.d
    and R1.e=R4.f
```

select *
from R1, R2, R3, R4
where R1.a=R2.b
and R1.c=R3.d
and R1.e=R4.f
and R2.g=R3.h
and R2.i=R4.j and R3.k=R4.1

Cardinality, Selectivity and Cost Function

- $|\sigma(R)|=f_{R} \cdot|R|$
- $\left|R_{1} \bowtie R_{2}\right|=f_{1,2} \cdot\left|R_{1}\right|\left|R_{2}\right|$
$-|T|= \begin{cases}\left|R_{i}\right| & \text { if } T \text { is a leaf } R_{i} \\ \left(\prod_{R_{i} \in T_{1}, R_{j} \in T_{2}} f_{i, j}\right)\left|T_{1}\right|\left|T_{2}\right| & \text { if } T=T_{1} \bowtie T_{2}\end{cases}$
- $C_{\text {out }}(T)= \begin{cases}0 & \text { if } T \text { is a leaf } R_{i} \\ |T|+C_{\text {out }}\left(T_{1}\right)+C_{\text {out }}\left(T_{2}\right) & \text { if } T=T_{1} \bowtie T_{2}\end{cases}$
- $C_{N L}\left(T_{1} \bowtie T_{2}\right)=\left|T_{1}\right|\left|T_{2}\right|$
- $C_{H J}\left(T_{1} \bowtie T_{2}\right)=1.2\left|T_{1}\right|$
- $C_{S M J}\left(T_{1} \bowtie T_{2}\right)=\left|T_{1}\right| \log \left(\left|T_{1}\right|\right)+\left|T_{2}\right| \log \left(\left|T_{2}\right|\right)$

First Greedy Heuristics

Construct a linear join tree

- GreedyJoinOrdering-1: order relations by cardinality
- GreedyJoinOrdering-2: order relations by selectivity
- GreedyJoinOrdering-3: order by selectivity, try each relation as start relation

Homework

- Give an example query graph for which GOO does not give the optimal join tree
- Perform IKKBZ heuristic on this query and compare $C_{o u t}$
- Implement a Query Graph for TinyDB
- Slides and exercises: db.in.tum.de/teaching/ws1718/queryopt
- Send any questions, comments, solutions to exercises etc. to radke@in.tum.de
- Exercise due: 9 AM, November 20

