Query Optimization: Exercise Session 3

Bernhard Radke

November 3, 2017

Homework

Exercise 1

$$
\sigma_{p_{1}}\left(R_{1} \bowtie_{p_{2}} R_{2}\right)=\sigma_{p_{1}}\left(R_{1}\right) \bowtie_{p_{2}} R_{2} \text { if } \mathcal{F}\left(p_{1}\right) \subseteq \mathcal{A}\left(R_{1}\right)
$$

Let $t \in \sigma_{p_{1}}\left(R_{1} \bowtie_{p_{2}} R_{2}\right) \quad \Leftrightarrow \quad t \in\left(R_{1} \bowtie_{p_{2}} R_{2}\right)$ and p_{1} holds for t

$$
\begin{array}{rll}
\mathcal{F}\left(p_{1}\right) & \Leftrightarrow & \left.\exists t_{1} \in R_{1}, t_{2} \in R_{2}\right) \\
& \Leftrightarrow & \exists t_{1} \in R_{1}, t_{2} \in R_{2} \text { s.t. } t=t_{1} \circ t_{2} \wedge p_{1}(t) \wedge p_{2}(t) \\
& \Leftrightarrow & \exists t_{1} \in t_{2} \wedge p_{1}\left(t_{1}\right) \wedge p_{2}(t) \\
& \Leftrightarrow & \\
& \left.\left.t \in R_{1}\right), t_{2} \in R_{2} \text { s.t. } t=t_{1} \circ R_{1}\right) \bowtie_{p_{2}} R_{2}
\end{array}
$$

- $\sigma_{p_{1}}\left(R_{1} \bowtie_{p_{2}} R_{2}\right)=\sigma_{p_{1}}\left(R_{1}\right) \bowtie_{p_{2}} R_{2}$ if $\mathcal{F}\left(p_{1}\right) \subseteq \mathcal{A}\left(R_{1}\right)$: similar
- $\sigma_{p_{1}}\left(R_{1} \bowtie_{p_{2}} R_{2}\right) \neq \sigma_{p_{1}}\left(R_{1}\right) \bowtie_{p_{2}} R_{2}$ if $\mathcal{F}\left(p_{1}\right) \subseteq \mathcal{A}\left(R_{1}\right)$: Let $R_{1}=\emptyset$
- $\sigma_{p_{1}}\left(R_{1} \bowtie_{p_{2}} R_{2}\right) \neq \sigma_{p_{1}}\left(R_{1}\right) \bowtie_{p_{2}} R_{2}$ if $\mathcal{F}\left(p_{1}\right) \subseteq \mathcal{A}\left(R_{1}\right)$ Let $R_{1}=\emptyset$

Exercise 2

We know $\left|R_{1}\right|,\left|R_{2}\right|$, domains of $R_{1} \cdot x, R_{2} \cdot y$, (that is, $\left|R_{1} \cdot x\right|,\left|R_{2} \cdot y\right|$), and whether x and y are keys or not.
The selectivity of $\sigma_{R_{1} \cdot x=c}$ is...

- if x is the key: $\frac{1}{\left|R_{1}\right|}$
- if x is not the key: $\frac{1}{\left|R_{1} \cdot x\right|}$

We know $\left|R_{1}\right|,\left|R_{2}\right|,\left|R_{1} \cdot x\right|,\left|R_{2} . y\right|$, and whether x and y are keys or not. First, the size of $R_{1} \times R_{2}$ is $\left|R_{1}\right|\left|R_{2}\right|$
The selectivity of $\bowtie_{R_{1}, x=R_{2} . y}$ is...

- if both x and y are the keys: $\frac{1}{\max \left(\left|R_{1}\right|,\left|R_{2}\right|\right)}$
- if only x is the key: $\frac{1}{\left|R_{1}\right|}$
- if both x and y are not the keys: $\frac{1}{\max \left(\left|R_{1} \cdot x\right|,\left|R_{2} \cdot y\right|\right)}$

Exercise 3

- $|R|=1,000$ pages, $|S|=100,000$ pages
- 1 page $=50$ tuples, 1 block $=100$ pages
- avg. access $=10 \mathrm{~ms}$, transfer speed $=10,000$ pages $/ \mathrm{sec}$
- Time for (blockwise) nested loops join?

Selectivity estimation

We know $\left|R_{1}\right|, \max \left(R_{1} \cdot x\right), \min \left(R_{1} \cdot x\right), R_{1} \cdot x$ is arithmetic.

The selectivity of $\sigma_{R_{1} \cdot x>c}$ is $\frac{\max \left(R_{1} \cdot x\right)-c}{\max \left(R_{1} \cdot x\right)-\min \left(R_{1} \cdot x\right)}$

The selectivity of $\sigma_{c_{1}<R_{1} \cdot x<c_{2}}$ is $\frac{c_{2}-c_{1}}{\max \left(R_{1} \cdot x\right)-\min \left(R_{1} \cdot x\right)}$

Homework

- Give the query graphs for the two queries from Exercise 1
- Give an example query where the optimal join tree (using $C_{o u t}$) is bushy and contains a cross product
- based on the parser you built in exercise 1, implement canonical translation for tinydb
- Slides and exercises: db.in.tum.de/teaching/ws1718/queryopt
- Send any questions, comments, solutions to exercises etc. to radke@in.tum.de
- Exercise due: 9 AM, November 13

