
Query Optimization: Exercise
Session 14

Bernhard Radke

February 5, 2018

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Motivation

I declarative query has to be translated into an imperative, executable plan

I usually multiple semantically equivalent plans (search space)

I possibly huge differences in execution costs of different alternatives

Goal: find the cheapest of those plans

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Query Graph

I undirected graph

I nodes: relations

I edges: predicates/joins

I different shapes (e.g. chain, star, tree, clique)

I shape influences size of the search space

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Join Tree

I inner nodes: operators (e.g. join, cross product)

I leaves: relations
I different shapes

I linear (left-deep, right-deep, zigzag)
I bushy

I desired shape influences size of the search space
I with cross products: number of tree shapes * number of leaf permutations
I without cross products: depends on the shape of the query graph

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Selectivity, Cardinality

fp =
|σp(R)|
|R|

fi ,j =
|Ri onpi,j Rj |
|Ri × Rj |

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Costs

Cout(R) = 0

Cout(Ri on Rj) = |Ri on Rj |+ Cout(Ri) + Cout(Rj)

I more advanced cost functions for different physical join implementations
I properties

I symmetry: C (A on B) = C (B on A)
I ASI: rank function r such that r(AUVB) ≤ r(AVUB)⇔ C (AUVB) ≤ C (AVUB)

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Greedy Heuristics

I choose each relation as start node once
I greedily pick adjacent nodes to join such that a specific function (e.g. MinSel) is

minimized/maximized

I pick the cheapest tree

I produces linear trees

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Greedy Operator Ordering (GOO)

I greedily pick edges such that the intermediate result is minimized

I merge nodes connected by the picked edge

I calculate cardinality of merged node

I calculate selectivities of collapsed edges (product of individual selectivities)

I can produce bushy trees

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Maximum Value Precedence (MVP)

I heuristic: prefer to perform joins that reduce the input size of expensive operations the
most

I algorithm builds an effective spanning tree in the weighted directed join graph (edges and
nodes have weights)

I physical edge: wu,v = |onu|
|uuv |

I virtual edge: wu,v = 1

I node: w(pi,j ,S) =
|onS

pi,j
|

|Rionpi,j
Rj |

I take edges with weight < 1 (reduce work for later operators)

I add remaining edges (increase input sizes as late as possible)

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

IKKBZ

I generates optimal left deep trees for acyclic queries in polynomial time (requires cost
function with ASI property)

I for each relation R in the query graph
I build the precedence graph rooted in R
I find subtree whose children are chains
I build compound relations to eliminate contradictory sequences (normalize)
I merge chains (ascending in rank)
I repeat until the whole join tree is a chain
I denormalize previously normalized compound relations

I pick the cheapest of all generated sequences

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Dynamic Programming

I optimality principle

I construct larger trees from optimal smaller ones

I try all combinations that might be optimal
I different possibilities to enumerate sets of relations

I DPsize : enumerate sets ascending in size
I DPsub: enumerate in integer order
I DPccp: enumerate connected component complement pairs

I adapts to the shape of the query graph
I lower bound for all DP algorithms

I DPhyp: handles hypergraphs (join predicates between more than two relations, reordering
constraints for non inner joins, graph simplification)

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Memoization

I recursive top-down approach

I memoize already generated trees to avoid duplicate work

I might be faster, as more knowledge allows for more pruning

I usually slower than DP

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Transformative Approaches

I apply equivalences to initial join tree

I makes it easy to add new equivalences/rules (in theory)

I use memoization (keep all trees generated so far)

I naive implementation generates a massive amount of duplicates

I duplicates can be avoided by disabling certain rules after a transformation has been
applied (introduction of new rules becomes harder)

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Permutations

I construct permutations of relations (left deep trees)
I choose each relation as start relation once

I successively add a relation to the existing chain (recursively enlarge the prefix)
I only explore the resulting chain further if exchanging the last two relations does not result in

a cheaper chain
I recursion base: all relations are contained in the chain ⇒ keep chain if cheaper than

cheapest chain seen so far

I any time algorithm (can be stopped as soon as the first complete permutation is
generated)

I finds the optimal plan eventually

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Random Join Trees (uniformly distributed)

general approach:

I set of alternatives S

I count number of alternatives n = |S |
I bijection rank : S → [0, n[

I draw a random number r ∈ [0, n[

I rank−1(r) gives a random element from S (unranking)

implementation

I random permutation (left deep tree, leaf labeling)

I random tree shape (Dyck words)

I random trees without cross products for tree queries (pretty complex)

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Quick Pick

I generate pseudo random trees

I randomly pick an edge from the query graph

I no longer uniformly distributed ⇒ no guarantees

I use union-find datastructure to identify subsets containing the nodes connected by an
edge

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Meta Heuristics

I universal optimization strategies
I Iterative Improvement

I start with random join tree
I apply random transformation until minimum is reached
I might be stuck in local minimum

I Simulated Annealing (inspired by metallurgy)
I start with random join tree
I apply random transformation
I accept transformed tree either if it is cheaper or - with a temperature dependent probability -

even if it is more expensive
I decrease temperature over time
I allows to escape local minima

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Meta Heuristics

I Tabu Search
I start with random join tree
I investigate cheapest neighbor even if it is more expensive
I keep (recently) investigated solutions in tabu set to avoid running into circles

I Genetic algorithms
I population of random join trees
I simulate crossover and mutation
I survival of the fittest

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Combinations and Hybrid Approaches

I Two Phase Optimization: II followed by SA

I AB Algorithms: IKKBZ followed by II

I Toured Simulated Annealing: run n times with different initial join trees (e.g. results of
GreedyJoinOrdering-3)

I GOO-II: Run II on the result of GOO

I Iterative DP (IDP-1): build join trees with up to k relations, replace cheapest with
compound, repeat

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Order Preserving Joins

I non-commutative operators

I how to parenthesize the chain?

I maintain arrays p (predicates), s (statistics), c (costs), t (split positions)

Query Optimization: Exercise Session 14 February 5, 2018

Repetition

Accessing the Data

I Yao, Cheung: estimate the number of pages to be read from disk if we want to read k
(distinct) tuples directly

I Bitvector: estimate sequential disk access costs for a sequence of k tuples sorted in the
order they reside on disk

I Selectivity estimation (Histograms)

Query Optimization: Exercise Session 14 February 5, 2018

Info

I Slides and exercises: db.in.tum.de/teaching/ws1718/queryopt

I Send any questions, comments, solutions to exercises etc. to radke@in.tum.de

I Exam on 27th of February at 13.30 in 102 Interims Hörsaal 2.

Good Luck!

Query Optimization: Exercise Session 14 February 5, 2018

http://db.in.tum.de/teaching/ws1718/queryopt
mailto:radke@in.tum.de?subject=[qo17]

	Repetition
	Info

