Query Optimization: Exercise

Session 11

Bernhard Radke

January 15, 2018

Order-Preserving Joins

Consider the following sequence of relations $R_{1}, R_{2}, R_{3}, R_{4}$ with cardinalities $\left|R_{1}\right|=200$, $\left|R_{2}\right|=1,\left|R_{3}\right|=1,\left|R_{4}\right|=20$ and join selectivities $f_{1,2}=0.5, f_{1,4}=0.2, f_{3,4}=0.1$.

Give the fully-parenthesized, optimal join-expression that abides by this order. Use $C_{o u t}$ as a cost function.

Let's start off with a cost analysis of the left-deep tree:

predicates p

\emptyset			
	\emptyset		
		\emptyset	
			\emptyset

statistics s

200			
	1		
		1	
			20

costs c
0
0
:---

split points t

predicates p

\emptyset			
	\emptyset		
		\emptyset	
			\emptyset

statistics s

200			
	1		
		1	
			20

costs c
0
0
:---

split points t

predicates p

\emptyset	$p_{1,2}$		
	\emptyset		
		\emptyset	
			\emptyset

statistics s

200	100		
	1		
		1	
			20

costs c

0	100		
	0		
		0	
			0

split points t

	1		

predicates p

\emptyset	$p_{1,2}$		
	\emptyset	\emptyset	
		\emptyset	
			\emptyset

statistics s

200	100		
	1	1	
		1	
			20

costs C

0	100		
	0	1	
		0	
			0

split points t

	1		
		2	

predicates p

\emptyset	$p_{1,2}$		
	\emptyset	\emptyset	
		\emptyset	$p_{3,4}$
			\emptyset

statistics s

200	100		
	1	1	
		1	2
			20

costs C

0	100		
	0	1	
		0	2
			0

split points t

	1		
		2	
			3

ExtractPlan $\left(R=\left\{R_{1}, \ldots, R_{n}\right\}, t, p\right)$
Input: a set of relations, arrays t and p
Output: a bushy join tree
return ExtractPlanRec $(R, t, p, 1, n)$

```
ExtractPlanRec \(\left(R=\left\{R_{1}, \ldots, R_{n}\right\}, t, p, i, j\right)\)
if \(i<j\)
    \(T_{1}=\operatorname{ExtractPlanRec}(R, t, p, i, t[i, j])\)
    \(T_{2}=\operatorname{ExtractPlanRec}(R, t, p, t[i, j]+1, j)\)
    return \(T_{1}{ }_{p[i, j]}^{L} T_{2}\)
else
    return \(\sigma_{p[i, j]} R_{i}\)
```

The values of t are:

i / j	1	2	3	4
1		1	1	1
2			2	3
3				3
4				

```
extract-subplan(..., i=1, j=4)
    extract-subplan(...,i=1, j=1)
    extract-subplan(..., i=2, j=4)
        extract-subplan(...,i=2, j=3)
            extract-subplan(...,i=2, j=2)
            extract-subplan(..., i=3, j=3)
            return ( }\mp@subsup{R}{2}{}\mp@subsup{\bowtie}{\mathrm{ true }}{}\mp@subsup{R}{3}{}
            extract-subplan(..., i=4, j=4)
        return (( }\mp@subsup{R}{2}{}\mp@subsup{\bowtie}{\mathrm{ true }}{}\mp@subsup{R}{3}{})\mp@subsup{\bowtie}{\mp@subsup{p}{3,4}{}}{}\mp@subsup{R}{4}{}
return ( }\mp@subsup{R}{1}{}\mp@subsup{\bowtie}{\mp@subsup{p}{1,2}{}}{}\wedge\mp@subsup{p}{1,4}{}((\mp@subsup{R}{2}{}\mp@subsup{\bowtie}{\mathrm{ true }}{}\mp@subsup{R}{3}{})\mp@subsup{\bowtie}{\mp@subsup{p}{3,4}{}}{}\mp@subsup{R}{4}{})
```

The total cost of this plan is $c[1,4]=43$.

Combinatorics 101

Given a set of n elements, how many distinct k-element subsets can be formed?

$$
\binom{n}{k}=\frac{n!}{(n-k)!\cdot k!}
$$

Example: Choose 3 out of 5: $\binom{5}{3}=\frac{5!}{2!\cdot 3!}=\frac{120}{2 \cdot 6}=10$

Homework

$$
\binom{n}{k}=\binom{n}{n-k}
$$

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

- Now with replacement: How many distinct multisets exist chosing k from n ? As many as there are distinct sets chosing k from $n+k-1$!
- Bijection between multisets and sets. From multiset to set: $f:\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mapsto\left(x_{1}+0, x_{2}+1, \ldots, x_{k}+(k-1)\right)$
- Example: Choose 2 from 4
- \# sets: $\binom{4}{2}$
- \# multisets: $\binom{4+2-1}{2}$

- Slides and exercises: db.in.tum.de/teaching/ws1718/queryopt
- Send any questions, comments, solutions to exercises etc. to radke@in.tum.de
- Exercise due: 9 AM, January 22

