Query Optimization: Exercise Session 11

Bernhard Radke

January 15, 2018

Order-Preserving Joins

Consider the following sequence of relations R_1 , R_2 , R_3 , R_4 with cardinalities $|R_1| = 200$, $|R_2| = 1$, $|R_3| = 1$, $|R_4| = 20$ and join selectivities $f_{1,2} = 0.5$, $f_{1,4} = 0.2$, $f_{3,4} = 0.1$.

Give the fully-parenthesized, optimal join-expression that abides by this order. Use C_{out} as a cost function.

Let's start off with a cost analysis of the left-deep tree:

 $C_{out} = 100 + 100 + 40 = 240$

predicates p

Ø			
	Ø		
		Ø	
			Ø

statistics s

200					
	1				
		1			
			20		

costs	costs c				
0					
	0				
		0			
			0		

OrderPreservingJoins($R = \{R_1, ..., R_n\}, P$) Input: a set of relations to be joined and a set of predicates Output: fills p, s, c, tfor each $1 \le i \le n$ { p[i, i] = predicates from P applicable to R_i $P = P \setminus p[i, i]$ s[i, i] = statistics for $\sigma_{p[i,i]}(R_i)$ c[i, i] = costs for $\sigma_{p[i,i]}(R_i)$

predicates p

Ø			
	Ø		
		Ø	
			Ø

statistics s				
200				
	1			
		1		
			20	

costs	costs c				
0					
	0				
		0			
			0		

01	for each $2 \le l \le 4$ ascending (in text: $2 \le l \le n$)
02	for each $1 \leq i \leq 5 - I$ (in text: $1 \leq i \leq n - I + 1$)
03	j = i + l - 1

$$03 \qquad j = i + I -$$

$$p[i,j] = predicates from P applicable to $R_i, \ldots, R_j$$$

05
$$P = P \setminus p[i, j]$$

06
$$s[i, j]$$
=statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$

$$c[i,j] = \infty$$

for each
$$i \le k < j$$

$$q = c[i,k] + c[k+1,j] + \text{costs for } s[i,k] \text{ and } s[k+1,j] \text{ and } p[i,j]$$

10 **if**
$$q < c[i, j]$$

predicates p

Ø	p _{1,2}		
	Ø		
		Ø	
			Ø

statistics s				
200	100			
	1			
		1		
			20	

costs c			
0	100		
	0		
		0	
			0

split points t

1	

01 for each 2 < l < 4 ascending (in text: 2 < l < n) 02 for each 1 < i < 5 - I (in text: 1 < i < n - I + 1)

03 i = i + l - 1

p[i, j]=predicates from P applicable to R_i, \ldots, R_j 04

05
$$P = P \setminus p[i, j]$$

s[i, j]=statistics derived from s[i, j - 1] and s[j, j] including p[i, j]06

07
$$c[i,j] = \infty$$

$$6 \qquad \text{for each } i \le k < 1$$

$$q = c[i,k] + c[k+1,j] + \text{costs for } s[i,k] \text{ and } s[k+1,j] \text{ and } p[i,j]$$

10 if
$$q < c[i]$$

11 $c[i] = q$

predicates p

Ø	p _{1,2}		
	Ø	Ø	
		Ø	
			Ø

statistics <i>s</i>				
200	100			
	1	1		
		1		
			20	

costs	5 C		
0	100		
	0	1	
		0	
			0

1		
	2	

01 for each
$$2 \le l \le 4$$
 ascending (in text: $2 \le l \le n$)
02 for each $1 \le i \le 5 - l$ (in text: $1 \le i \le n - l + 1$)

$$03 \qquad j=i+l-1$$

04
$$p[i,j]$$
=predicates from P applicable to R_i, \ldots, R_j

05
$$P = P \setminus p[i, j]$$

06
$$s[i, j]$$
=statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$

07
$$c[i,j] = \infty$$

for each
$$i \le k < j$$

$$q = c[i,k] + c[k+1,j] + \text{costs for } s[i,k] \text{ and } s[k+1,j] \text{ and } p[i,j]$$

10 if
$$q < c[i, j]$$

11 $c[i,j]=q$

predicates p

Ø	p _{1,2}		
	Ø	Ø	
		Ø	p 3,4
			Ø

statistics <i>s</i>				
200	100			
	1	1		
		1	2	
			20	

costs	5 C		
0	100		
	0	1	
		0	2
			0

split points t

spine points e				
	1			
		2		
			3	

01	for each $2 \le l \le 4$ ascending (in text: $2 \le l \le n$)	
02	for each $1 \le i \le 5 - I$ (in text: $1 \le i \le n - I + 1$)	

1

03
$$j = i + I - I$$

04
$$p[i,j]$$
=predicates from P applicable to R_i, \ldots, R_j

05
$$P = P \setminus p[i, j]$$

06
$$s[i, j]$$
=statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$

07
$$c[i,j] = \infty$$

for each
$$i \le k < j$$

$$q = c[i,k] + c[k+1,j] + \text{costs for } s[i,k] \text{ and } s[k+1,j] \text{ and } p[i,j]$$

10 if
$$q < c[i, j]$$

11 $c[i,j]=q$

ExtractPlan($R = \{R_1, ..., R_n\}, t, p$) **Input:** a set of relations, arrays t and p **Output:** a bushy join tree **return** ExtractPlanRec(R, t, p, 1, n)

ExtractPlanRec($R = \{R_1, ..., R_n\}, t, p, i, j$) if i < j $T_1 = ExtractPlanRec(R, t, p, i, t[i, j])$ $T_2 = ExtractPlanRec(R, t, p, t[i, j] + 1, j)$ return $T_1 \bowtie_{p[i,j]}^L T_2$ else return $\sigma_{p[i,j]}R_i$

extract-subplan(..., i=1, j=4) extract-subplan(..., i=1, j=1) extract-subplan(..., i=2, j=4) extract-subplan(..., i=2, j=3) extract-subplan(..., i=2, j=2) extract-subplan(..., i=3, j=3) return $(R_2 \bowtie_{\text{true}} R_3)$ $extract-subplan(\ldots, i=4, i=4)$ return $((R_2 \bowtie_{\text{true}} R_3) \bowtie_{P_3} R_4)$ return $(R_1 \bowtie_{p_1 2 \land p_1 4} ((R_2 \bowtie_{true} R_3) \bowtie_{p_3 4} R_4))$

The total cost of this plan is c[1,4] = 43.

Combinatorics 101

Given a set of n elements, how many distinct k-element subsets can be formed?

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

Example: Choose 3 out of 5:
$$\binom{5}{3} = \frac{5!}{2! \cdot 3!} = \frac{120}{2 \cdot 6} = 10$$

Homework

 $\binom{n}{k} = \binom{n}{n-k}$

 $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$

Combinatorics 101

- ► Now with replacement: How many distinct multisets exist chosing k from n? As many as there are distinct sets chosing k from n + k - 1!
- ▶ Bijection between multisets and sets. From multiset to set: $f: (x_1, x_2, ..., x_k) \mapsto (x_1 + 0, x_2 + 1, ..., x_k + (k - 1))$
- Example: Choose 2 from 4

- Slides and exercises: db.in.tum.de/teaching/ws1718/queryopt
- > Send any questions, comments, solutions to exercises etc. to radke@in.tum.de

Info

Exercise due: 9 AM, January 22