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Traditional Data Warehouse
• Isolate business-critical 

transactions from 
analytical queries 

• ETL process to update 
the data warehouse 

• Periodic refresh leads 
to data staleness
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HyPer
• Analytics  

Excellent response times 

• Transactions  
100k TPC-C transaction/s 

• Both workloads on the 
same state in one system 

• Code generation, MVCC
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Scale the HyPer main-
memory database system 
to a cluster of machines 
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Full Replication
• Replicate the data 

from a primary server 

• Improved query 
throughput 

• Same main-memory, 
same response times 
as a single server
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Horizontal Partitioning
• Partition the data 

across servers 

• Increases main-
memory capacity 

• But can we also 
speed up query 
processing?
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Speed-Up? Easy!

… as long as the system is slow on one server.
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Unfortunately, HyPer is Fast
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Negative Speed-Up
• Queries shuffle 

data for joins and 
aggregations

• Low bandwidth is 
main bottleneck 

• More servers = 
less performance
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Scale HyPer to a cluster 
and it should be fast
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Partition 1

Can’t we just avoid 
communication?

Partition 2

Partition 3 Partition 4
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Can’t we just avoid 
communication?

• Partition the data  
(H-Store/VoltDB do 
this for transactions) 

• Partition-crossing 
queries problematic 

• Partitioning depends 
on the workload

Partition 1 Partition 2

Partition 3 Partition 4
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Can’t we just use faster 
network hardware?
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Can’t we just use faster 
network hardware?
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• Low bandwidth is 
main bottleneck 

• InfiniBand offers up to 
100⨉ the bandwidth

• Existing software can 
use IPoIB unchanged
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Can’t we just use faster 
network hardware?

• New bottlenecks: 
• TCP/IP stack 

processing 
• Interrupts 
• Context switches 
• Multiple memory 

transfers

TP
C

-H
 s

pe
ed

-u
p

0x

1x

2x

3x

4x

number of servers

1 2 3 4 5 6

InfiniBand

16



• For slow networks 
more servers = 
less performance 

• New bottlenecks 
emerge for faster 
networks 

• Software has to 
change as well
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Software has to Change



InfiniBand QDR
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Two Types of Networks

QPI

• Connects NUMA 
sockets in a server 

• 32 GB/s bandwidth 

• 0.2 µs latency 

• Cache-coherent

InfiniBand QDR

• Connects servers in a 
cluster 

• 4 GB/s bandwidth 

• 1.3 µs latency 

• Not cache-coherent
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Hybrid Parallelism
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On each server:*

• Use flexible worker 
threads instead of 
exchange operators 

• Work stealing per CPU 

• Work stealing across 
NUMA sockets

Between servers:

• Use Remote Direct 
Memory Access 
(RDMA) instead of TCP 

• Decoupled exchange 
operators 

• Network scheduling

* Leis et al., Morsel-driven parallelism, SIGMOD 2014



TCP over InfiniBand
• TCP is compute-

bound at the receiver 

• Even with large MTUs 
and TCP offloading 

• Using a separate core 
for interrupts improves 
throughput by 53%

• Still compute-bound
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Remote Direct Memory Access
• Bypasses operating 

system and application 

• Zero-copy network 
communication: 
• Achieves full 

network throughput 
• Almost no CPU cost 
• Less data copying
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Classic Exchange
• A buffer per exchange: 

• # buffers per server 
= servers ⨉ cores2

• 1 GB/server for 
6 hosts and 20 cores 

• Skew is huge problem: 
• Join key assigned to 

fixed exchange 
• No work stealing
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Decoupled Exchange
• Use communication 

multiplexers (CM) 

• Address servers not 
individual cores: 
• Decreases memory 

consumption (2.5 MB 
instead of 1 GB) 

• Reduces negative 
impact of skew 

• Makes broadcast 
more applicable
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Decoupled Exchange
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Network Scheduling
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• Uncoordinated all-
to-all transfers cause 
switch contention

• Make sure a server 
sends to at most 
one server

• Low-latency inline 
RDMA messages for 
network scheduling
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Network Scheduling
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• For slow networks 
more servers = 
less performance 

• New bottlenecks 
emerge for faster 
networks 

• Hybrid parallelism 
optimizes for both 
types of networks
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How do we compare?
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Future Work

What about low-latency distributed transactions?
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Backup
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High Availability
PA

R
T 

3

PART 2O
rd

er
s 

3

Orders 2 PA
R

T 
3

PART 4
PART 5

O
rd

er
s 

3

Orders 4
Orders 5

PART 1
PART 4

Orders 1
Orders 4

PART 2

PA
R

T 
3

PART 5

Orders 2

O
rd

er
s 

3

Orders 5PA
R

T 
8

PART 2
PART 5O

rd
er

s 
4

Orders 1
Orders 2

PART 1

PART 5

Orders 1

Orders 5



Hot/cold approach
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Parallelism

theory practice
36


