
High-Speed Query Processing 
over High-Speed Networks

Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, Thomas Neumann



Traditional Data Warehouse

Database Data Warehouse

Extract
Transform
Load

Transactions Analytics

2



Traditional Data Warehouse
• Isolate business-critical 

transactions from 
analytical queries 

• ETL process to update 
the data warehouse 

• Periodic refresh leads 
to data staleness

Database Data 
Warehouse

Extract
Transform
Load

3



HyPer
• Analytics  

Excellent response times 

• Transactions  
100k TPC-C transaction/s 

• Both workloads on the 
same state in one system 

• Code generation, MVCC

4



Scale the HyPer main-
memory database system 
to a cluster of machines 

5



Full Replication
• Replicate the data 

from a primary server 

• Improved query 
throughput 

• Same main-memory, 
same response times 
as a single server

6



Horizontal Partitioning
• Partition the data 

across servers 

• Increases main-
memory capacity 

• But can we also 
speed up query 
processing?

7



Speed-Up? Easy!

… as long as the system is slow on one server.

sp
ee

d 
up

# servers

8



Unfortunately, HyPer is Fast
no

rm
al

iz
ed

 p
er

fo
rm

an
ce

0%

25%

50%

75%

100%

HyPer{DB2 BLU, HANA, Oracle, 
PostgreSQL, Vectorwise}

TPC-H

9



Negative Speed-Up
• Queries shuffle 

data for joins and 
aggregations

• Low bandwidth is 
main bottleneck 

• More servers = 
less performance

TP
C

-H
 s

pe
ed

-u
p

0x

1x

2x

3x

4x

number of servers

1 2 3 4 5 6

Gigabit Ethernet

10



Scale HyPer to a cluster 
and it should be fast

11



Partition 1

Can’t we just avoid 
communication?

Partition 2

Partition 3 Partition 4

12



Can’t we just avoid 
communication?

• Partition the data  
(H-Store/VoltDB do 
this for transactions) 

• Partition-crossing 
queries problematic 

• Partitioning depends 
on the workload

Partition 1 Partition 2

Partition 3 Partition 4

13



Can’t we just use faster 
network hardware?

14



Can’t we just use faster 
network hardware?

15

• Low bandwidth is 
main bottleneck 

• InfiniBand offers up to 
100⨉ the bandwidth

• Existing software can 
use IPoIB unchanged

ba
nd

w
id

th
 in

 G
B/

s
0

4

8

12

G
bE

SD
R

D
D

R

Q
D

R

FD
R

ED
R

Ethernet
InfiniBand



Can’t we just use faster 
network hardware?

• New bottlenecks: 
• TCP/IP stack 

processing 
• Interrupts 
• Context switches 
• Multiple memory 

transfers

TP
C

-H
 s

pe
ed

-u
p

0x

1x

2x

3x

4x

number of servers

1 2 3 4 5 6

InfiniBand

16



• For slow networks 
more servers = 
less performance 

• New bottlenecks 
emerge for faster 
networks 

• Software has to 
change as well

TP
C

-H
 s

pe
ed

-u
p

0x

1x

2x

3x

4x

number of servers

1 2 3 4 5 6

Gigabit Ethernet
InfiniBand

17

Software has to Change



InfiniBand QDR

host 1

host 3 host 4 host 5

host 0

PCIe 3.0

QPI

Two Types of Networks

18

CPU 0 CPU 1CPU 0
10 cores

CPU 1
10 cores12

8 
G

B

12
8 

G
B

59.7 
GB/s

59.7 
GB/s

16 GB/s

4 GB/s

HCA

16 GB/s

15.75 GB/s

host 2

QPI



Two Types of Networks

QPI

• Connects NUMA 
sockets in a server 

• 32 GB/s bandwidth 

• 0.2 µs latency 

• Cache-coherent

InfiniBand QDR

• Connects servers in a 
cluster 

• 4 GB/s bandwidth 

• 1.3 µs latency 

• Not cache-coherent

19



Hybrid Parallelism

20

On each server:*

• Use flexible worker 
threads instead of 
exchange operators 

• Work stealing per CPU 

• Work stealing across 
NUMA sockets

Between servers:

• Use Remote Direct 
Memory Access 
(RDMA) instead of TCP 

• Decoupled exchange 
operators 

• Network scheduling

* Leis et al., Morsel-driven parallelism, SIGMOD 2014



TCP over InfiniBand
• TCP is compute-

bound at the receiver 

• Even with large MTUs 
and TCP offloading 

• Using a separate core 
for interrupts improves 
throughput by 53%

• Still compute-bound

21

0 s

5 s

10 s

15 s

20 s

25 s

sender receiver

busy idle

59%

98%



Remote Direct Memory Access
• Bypasses operating 

system and application 

• Zero-copy network 
communication: 
• Achieves full 

network throughput 
• Almost no CPU cost 
• Less data copying

22

sender

Application
HCA

Operating 
System

receiver

Application

Operating 
System

HCA

Buffer

Buffer



0 s

5 s

10 s

15 s

20 s

25 s

sender receiver

busy idle

0 s

5 s

10 s

15 s

20 s

25 s

sender receiver

busy idle

3% 3%
59%

98%

+35% 
throughput

–98%  
CPU time

TCP via IPoIB RDMA

Remote Direct Memory Access



Classic Exchange
• A buffer per exchange: 

• # buffers per server 
= servers ⨉ cores2

• 1 GB/server for 
6 hosts and 20 cores 

• Skew is huge problem: 
• Join key assigned to 

fixed exchange 
• No work stealing

exchange

exchange exchange

exchange

exchange exchange

exchange

exchange exchange

exchangeexchange

exchange

24

host 0

host 1

host 2



Decoupled Exchange
• Use communication 

multiplexers (CM) 

• Address servers not 
individual cores: 
• Decreases memory 

consumption (2.5 MB 
instead of 1 GB) 

• Reduces negative 
impact of skew 

• Makes broadcast 
more applicable

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

CM

CM

CM

25

host 0

host 1

host 2



Decoupled Exchange

26

TP
C

-H
 s

pe
ed

-u
p

0x

5x

10x

15x

number of servers

6 (1) 30 (5) 60 (10) 90 (15) 120 (20)

Vectorwise Vortex (exchange)
HyPer (exchange)
HyPer (decoupled exchange)

3⨉



Network Scheduling

27

• Uncoordinated all-
to-all transfers cause 
switch contention

• Make sure a server 
sends to at most 
one server

• Low-latency inline 
RDMA messages for 
network scheduling

2 3 2

1 4 2

3 1 1

4 3 21

2

3

4
crossbar switch

input queues outputs

inputs

21 3 4



Network Scheduling

28

th
ro

ug
hp

ut
 in

 G
B/

s

0

1

2

3

4

number of servers

2 3 4 5 6 7 8

all-to-all scheduling



• For slow networks 
more servers = 
less performance 

• New bottlenecks 
emerge for faster 
networks 

• Hybrid parallelism 
optimizes for both 
types of networks

TP
C

-H
 s

pe
ed

-u
p

0x

1x

2x

3x

4x

number of servers

1 2 3 4 5 6

Gigabit Ethernet
InfiniBand
Hybrid Parallelism

29

Summary



How do we compare?

HyPer Scale-Out

Vectorwise Vortex

MemSQL

Impala

Spark SQL

TPC-H queries/h

0 5,000 10,000 15,000 20,000 25,000

 77

 123

 544

 3,856

 20,739

30



Future Work

What about low-latency distributed transactions?

31



Backup



Elasticity
e5fa4
4f2b3
1c1fb

553b6
021e7
360d0

1ff5e
c13ff
7d5d9

7448d
8798a
43801

452e2
56f9b
62d4b

a3db5
24e7a
f6f9e new 

server

Orders 3

Orders 5
Orders 1

Orders 2
Orders 6

Orders 4



High Availability
PA

R
T 

3

PART 2O
rd

er
s 

3

Orders 2 PA
R

T 
3

PART 4
PART 5

O
rd

er
s 

3

Orders 4
Orders 5

PART 1
PART 4

Orders 1
Orders 4

PART 2

PA
R

T 
3

PART 5

Orders 2

O
rd

er
s 

3

Orders 5PA
R

T 
8

PART 2
PART 5O

rd
er

s 
4

Orders 1
Orders 2

PART 1

PART 5

Orders 1

Orders 5



Hot/cold approach

COLD 3

C
O

LD
 9

COLD 6

HOT

COLD 3

C
O

LD
 9

COLD 6

HOT
C

O
LD

 8

COLD 2
COLD 5

HOT
C

O
LD

 8

COLD 2
COLD 5

HOT

C
O

LD
 7

COLD 1
COLD 4

HOT

C
O

LD
 7

COLD 1
COLD 4

HOT

HOT

multicast 
redo log

distributed queries on global TX-consistent snapshots

persistent 
storage

redo log



Parallelism

theory practice
36


