Query Optimization Exercise Session 10

Bernhard Radke

January 30, 2017

Order Preserving Joins: Example

Consider the following *sequence* of relations R_1 , R_2 , R_3 , R_4 and their join graph:

Give a fully-parenthesized, optimal join-expression that abides by this order. Use C_{out} as a cost function.

Let's start off with a cost analysis of the left-deep tree:

 $C_{out} =$

Let's start off with a cost analysis of the left-deep tree:

 $C_{out} = 100$

Let's start off with a cost analysis of the left-deep tree:

 $C_{out} = 100 + 100$

Let's start off with a cost analysis of the left-deep tree:

 $C_{out} = 100 + 100 + 40 = 240$

Order Preserving Joins: Initialization

```
OrderPreservingJoins(R = \{R_1, ..., R_n\}, P)

Input: a set of relations to be joined and a set of predicates

Output:fills p, s, c, t

for each 1 \le i \le n {

p[i, i] = predicates from P applicable to R_i

P = P \setminus p[i, i]

s[i, i] = statistics for \sigma_{p[i,i]}(R_i)

c[i, i] = costs for \sigma_{p[i,i]}(R_i)

}
```

pr	edic	ates	р	st	atist	tics	costs c					
Ø				200				0				
	Ø				1				0			
		Ø				1				0		
			Ø				20				0	

01for each
$$2 \le l \le 4$$
 ascending (in text: $2 \le l \le n$)
02 for each $1 \le i \le 5 - l$ (in text: $1 \le i \le n - l + 1$)
03 $j = i + l - 1$
04 $p[i, j]$ =predicates from P applicable to R_i, \ldots, R_j
05 $P = P \setminus p[i, j]$
06 $s[i, j]$ =statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$
07 $c[i, j] = \infty$
08 for each $i \le k < j$
10 $q = c[i, k] + c[k + 1, j]$ +costs for $s[i, k]$ and $s[k + 1, j]$ and $p[i, j]$
11 if $q < c[i, j] = q$
12 $c[i, j] = q$

13 t[i,j]=k

1	predicates p			:		COS	ts c	split points t							
Ø				200				0							
	Ø				1				0						
		Ø				1				0					
			Ø				20				0				

line =

I = i =

. _

j =

k =

01for each
$$2 \le l \le 4$$
 ascending (in text: $2 \le l \le n$)
02 for each $1 \le i \le 5 - l$ (in text: $1 \le i \le n - l + 1$)
03 $j = i + l - 1$
04 $p[i, j]$ =predicates from P applicable to R_i, \ldots, R_j
05 $P = P \setminus p[i, j]$
06 $s[i, j]$ =statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$
07 $c[i, j] = \infty$
08 for each $i \le k < j$
10 $q = c[i, k] + c[k + 1, j] + costs$ for $s[i, k]$ and $s[k + 1, j]$ and $p[i, j]$
11 if $q < c[i, j] = \alpha$
12 $c[i, j] = \alpha$

13 t[i,j]=k

predicates p						split points t									
Ø	{ p _{1,2} }			200	100			0	∞						
	Ø				1				0						
		Ø				1				0					
			Ø				20				0				

line	=	08

1

2

i =

i =

k =

~ —

01for each
$$2 \le l \le 4$$
 ascending (in text: $2 \le l \le n$)
02 for each $1 \le i \le 5 - l$ (in text: $1 \le i \le n - l + 1$)
03 $j = i + l - 1$
04 $p[i, j]$ =predicates from P applicable to R_i, \ldots, R_j
05 $P = P \setminus p[i, j]$
06 $s[i, j]$ =statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$
07 $c[i, j] = \infty$
08 for each $i \le k < j$
10 $q = c[i, k] + c[k + 1, j] + costs$ for $s[i, k]$ and $s[k + 1, j]$ and $p[i, j]$
11 if $q < c[i, j] = \alpha$
12 $c[i, j] = \alpha$

13 t[i,j]=k

	pred	icate	es p			costs c				split points t						
Ø	Ø {p1,2}				200	100			0	100				1		
	Ø					1				0						
			Ø				1				0					
				Ø				20				0				
line	e =	13														
	=	2														

i =

$$j = 2$$

 $k = 1$

1

$$q = 0 + 0 + 200 \cdot 1 \cdot \frac{1}{2} = 100$$

01for each
$$2 \le l \le 4$$
 ascending (in text: $2 \le l \le n$)
02 for each $1 \le i \le 5 - l$ (in text: $1 \le i \le n - l + 1$)
03 $j = i + l - 1$
04 $p[i, j]$ =predicates from P applicable to R_i, \ldots, R_j
05 $P = P \setminus p[i, j]$
06 $s[i, j]$ =statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$
07 $c[i, j] = \infty$
08 for each $i \le k < j$
10 $q = c[i, k] + c[k + 1, j] + costs$ for $s[i, k]$ and $s[k + 1, j]$ and $p[i, j]$
11 if $q < c[i, j] = \alpha$
12 $c[i, j] = \alpha$

13 t[i,j]=k

predicates p				statistics s					costs c					split points t			
Ø	{ p _{1,2} }			200	100			0	100				1				
	Ø	Ø			1	1			0	∞							
		Ø				1				0							
			Ø				20				0						
line	e = 11																

$$I =$$

2

2

3

i =

j =

$$k = 2$$

 $q = 0 + 0 + 1 \cdot 1 \cdot 1 = 1$

01for each
$$2 \le l \le 4$$
 ascending (in text: $2 \le l \le n$)
02 for each $1 \le i \le 5 - l$ (in text: $1 \le i \le n - l + 1$)
03 $j = i + l - 1$
04 $p[i, j]$ =predicates from P applicable to R_i, \ldots, R_j
05 $P = P \setminus p[i, j]$
06 $s[i, j]$ =statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$
07 $c[i, j] = \infty$
08 for each $i \le k < j$
10 $q = c[i, k] + c[k + 1, j]$ +costs for $s[i, k]$ and $s[k + 1, j]$ and $p[i, j]$
11 if $q < c[i, j] = q$
12 $c[i, j] = q$

13 t[i,j]=k

predicates p				statistics s					costs c					split points t			
Ø	{ p _{1,2} }			200	100			0	100				1				
	Ø	Ø			1	1			0	1				2			
		Ø				1				0							
			Ø				20				0						

2

2

/ =

i =

j = 3

k = 2

$$\begin{array}{ll} 01 \text{for each } 2 \leq l \leq 4 \text{ ascending (in text: } 2 \leq l \leq n \text{ }) \\ 02 \quad \text{for each } 1 \leq i \leq 5 - l \text{ (in text: } 1 \leq i \leq n - l + 1) \\ 03 \quad j = i + l - 1 \\ 04 \quad p[i, j] = \text{predicates from } P \text{ applicable to } R_i, \dots, R_j \\ 05 \quad P = P \setminus p[i, j] \\ 06 \quad s[i, j] = \text{statistics derived from } s[i, j - 1] \text{ and } s[j, j] \text{ including } p[i, j] \\ 07 \quad c[i, j] = \infty \\ 08 \quad \text{for each } i \leq k < j \\ 10 \quad q = c[i, k] + c[k + 1, j] + \text{costs for } s[i, k] \text{ and } s[k + 1, j] \text{ and } p[i, j] \\ 11 \quad \text{if } q < c[i, j] = k \end{array}$$

predicates p statistics s costs c split points t 200 Ø {**P1**,**2**} 100 0 100 1 Ø Ø 1 1 0 1 2 Ø {p3,4} 1 2 0 ∞ Ø 20 0 line = 11

$$l = 2
i = 3
j = 4
k = 3
q = 0 + 0 + 1 \cdot 20 \cdot \frac{1}{10} = 2$$

01for each
$$2 \le l \le 4$$
 ascending (in text: $2 \le l \le n$)
02 for each $1 \le i \le 5 - l$ (in text: $1 \le i \le n - l + 1$)
03 $j = i + l - 1$
04 $p[i, j]$ =predicates from P applicable to R_i, \ldots, R_j
05 $P = P \setminus p[i, j]$
06 $s[i, j]$ =statistics derived from $s[i, j - 1]$ and $s[j, j]$ including $p[i, j]$
07 $c[i, j] = \infty$
08 for each $i \le k < j$
10 $q = c[i, k] + c[k + 1, j] + costs$ for $s[i, k]$ and $s[k + 1, j]$ and $p[i, j]$
11 if $q < c[i, j] = q$
12 $c[i, j] = q$

t[i,j]=k 13

predicates p				statistics s					costs c					split points t			
Ø	$\{p_{1,2}\}$			200	100			0	100				1				
	Ø	Ø			1	1			0	1				2			
		Ø	{p _{3,4} }			1	2			0	2				3		
			Ø				20				0						

line =13

> I =2 3

i =

i =4

k =3

4

ExtractPlan($R = \{R_1, ..., R_n\}, t, p$) **Input:** a set of relations, arrays t and p **Output:** bushy join tree **return** ExtractPlanRec(R, t, p, 1, n)

ExtractPlanRec(
$$R = \{R_1, ..., R_n\}, t, p, i, j$$
)
if $i < j$
 $T_1 = \text{ExtractPlanRec}(R, t, p, i, t[i, j])$
 $T_2 = \text{ExtractPlanRec}(R, t, p, t[i, j] + 1, j)$
return $T_1 \bowtie_{p[i,j]}^{L} T_2$
else

return $\sigma_{p[i,j]}R_i$

Order Preserving Joins: extract-plan callstack

```
extract-subplan(..., i=1, j=4)

extract-subplan(..., i=1, j=1)

extract-subplan(..., i=2, j=4)

extract-subplan(..., i=2, j=3)

extract-subplan(..., i=2, j=2)

extract-subplan(..., i=3, j=3)

return (R_2 \bowtie_{true} R_3)

extract-subplan(..., i=4, j=4)

return ((R_2 \bowtie_{true} R_3) \bowtie_{P_{3,4}} R_4)

return (R_1 \bowtie_{P_{1,2} \land P_{1,4}} ((R_2 \bowtie_{true} R_3) \bowtie_{P_{3,4}} R_4))
```

The total cost of this plan is c[1, 4] = 43.

Info

- Submit exercises to radke@in.tum.de
- Due February 6, 2017.