Query Optimization
 Exercise Session 9

Bernhard Radke

January 16, 2017

Genetic Algorithms

Big picture

- Create a "population", i.e. create p random join trees
- Encode them using ordered list or ordinal number encoding
- Create the next generation
- Randomly mutate some members (e.g. exchange two relations)
- Pairs members of the population and create "crossovers"
- Select the best, kill the rest

Details

- Encodings
- Crossovers

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it
Ordinal numbers
- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: $\left(\left(\left(R_{1} \bowtie R_{4}\right) \bowtie R_{3}\right) \bowtie R_{2}\right) \bowtie R_{5}$
- Bushy trees: $\left(R_{3} \bowtie\left(R_{1} \bowtie R_{2}\right)\right) \bowtie\left(R_{4} \bowtie R_{5}\right)$

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it
Ordinal numbers
- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: $\left(\left(\left(R_{1} \bowtie R_{4}\right) \bowtie R_{3}\right) \bowtie R_{2}\right) \bowtie R_{5} \mapsto 13211$
- Bushy trees: $\left(R_{3} \bowtie\left(R_{1} \bowtie R_{2}\right)\right) \bowtie\left(R_{4} \bowtie R_{5}\right)$

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it
Ordinal numbers
- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: $\left(\left(\left(R_{1} \bowtie R_{4}\right) \bowtie R_{3}\right) \bowtie R_{2}\right) \bowtie R_{5} \mapsto 13211$
- Bushy trees: $\left(R_{3} \bowtie\left(R_{1} \bowtie R_{2}\right)\right) \bowtie\left(R_{4} \bowtie R_{5}\right) \mapsto 12212312$

Crossover

Subsequence exchange for ordered list encoding

- Select subsequence in parent 1, e.g. abcdefgh
- Reorder subsequence according to the order in parent 2

Subsequence exchange for ordinal number encoding

- Swap two sequences of same length and same offset
- What if we get duplicates?

Subset exchange for ordered list encoding

- Find random subsequeces in both parents that have the same length and contain the same relations
- Exchange them to create two children
- Submit exercises to radke@in.tum.de
- Due January 23, 2017.

