Query Optimization
 Exercise Session 6

Bernhard Radke

December 12, 2016

Generating Permutations

ConstructPermutationsRec (P, R, B)
Input: a prefix P, remaining relations R, best plan B
Output:side effects on B
if $|R|=0\{$
if $B=\epsilon \vee C(B)>C(P)\{$
$B=P$
\}
\} else \{
for each $R_{i} \in R\{$
if $C\left(P \circ<R_{i}>\right) \leq C\left(P[1:|P|-1] \circ<R_{i}, P[|P|]>\right)\{$
ConstructPermutationsRec $\left(P \circ<R_{i}>, R \backslash\left\{R_{i}\right\}, B\right)$
\}
\}
\}

Generating Permutations

Memoization

- DP: bottom-up construction of the join tree
- Memoization: top-down construction
- Memoize already generated join tree to avoid duplicate work
- Sometimes more efficient

Algorithms: Roadmap

- Deterministic
- Exact (IKKBZ, DP, Permutations, Memoization,...)
- Heuristics (GOO, MVP, Query Simplification,...)
- Probabilistic
- Hybrid

Random left-deep trees with cross products

- there are n ! trees (every tree - permutation)
- let's generate a random number in $[0, n![$
- unranking - for a generated number construct a tree
- ranking - for a tree define it's number

Generating random permutations

for each $k \in[0, n[$ descending
$\operatorname{swap}(\pi[k], \pi[\operatorname{random}(k)])$
Array π initialized with elements $[0, n[$. random (k) generates a random number in $[0, k]$.

Unranking

Unrank (n, r)
Input: the number n of elements to be permuted and the rank r of the permutation to be constructed
Output:a permutation π for each $0 \leq i<n$

$$
\pi[i]=i
$$

for each $n \geq i>0$ descending $\{$
$\operatorname{swap}(\pi[i-1], \pi[r \bmod i])$
$r=\lfloor r / i\rfloor$
\}
return π;

Random join trees with cross products

- Generate a tree, then generate a permutation: $C(n-1)$ trees, n ! permutations
- Pick a random number $b \in[0, C(n-1)[$, unrank b
- Pick a random number $p \in[0, n![$, unrank p
- Attach the permutation to the leaves

Unranking

- every tree is a word in $\{()$,
- map such words to the grid, every step up is (, down)

Unranking

- every tree is a word in $\{()$,
- map such words to the grid, every step up is (, down)

Unranking

- every tree is a word in $\{()$,
- map such words to the grid, every step up is (, down)
- the number of different paths q can be computed (see lectures)
- Procedure: start in $(0,0)$, walk up as long as rank is smaller than q. When it is bigger, step down, rank=rank-q

Example

- Bushy tree number 56, 8 leaves

Random Join Tree Selection

Info

- Exercises due: 9 AM, December 19, 2016

