QI ENEEEETE|WANES TSI Transactions and Recovery

Transactions and Recovery



QI ENEEEETE|WANES TSI Transactions and Recovery

Transactions and Recovery

DBMSs offer two important concepts:
1. transaction support

» a sequence of operations is combined into one compound operation
» transactions can be execution concurrently with well defined semantics

2. recovery

» the machine/DBMS/user code can crash at an arbitrary point in time, errors can occur, etc.
> the recovery component ensures that no (committed) data is lost, instance is consistent

Implementation of both is intermingled, therefore we consider them together.



gl
Why Transactions?

Transfer money from account A to account B

read the account balance of A into the variable a: read(A,a);
e reduce the balance by EURO 50,—: a:= a — 50;

e write back the new account balance: write(A,a);

e read the account balance of B into the variable b: read(B,b);
e increase the balance by EURO 50,—: b := b+ 50;

e write back the new account balance: write(B,b);

Many issues here: crashes, correctness, concurrency, ...



QI ENEEEETE|WANES TSI Transactions and Recovery

Operations

¢ begin of transaction (BOT):
» marks the begin of transaction
> in SQL: begin transaction
» often implicit
e commit:
» terminates a successful transaction
» in SQL: commit [transaction]
P all changes are permanent now
e abort:
» terminates an unsuccessful transaction
» in SQL: rollback [transaction]
» undoes all changes performed by the transaction
» might be triggered externally

All transactions either commit or abort.



QI ENEEEETE|WANES TSI Transactions and Recovery

Transactions should offer ACID properties:
e Atomicity
» the operations are either executed completely or not at all
e Consistency
P> a transaction brings a database instance from one consistent state into another one
e [solation
» currently running transactions are not aware of each other
e Durability

P once a transaction commits successfully, its changes are never lost



QI ENEEEETE|WANES TSI Transactions and Recovery

Transactions and Recovery
The concept of recovery is related to the transaction concept:
e the DBMS must handle a crash at an arbitrary point in time
o first, the DBMS data structures must survive this
e second, transaction guarantees must still hold
e Atomicity
> in-flight transactions must be rolled back at restart
o Consistency
» consistency guarantees must still hold
e Durability
P> committed transactions must not be lost, even though data might still be in transient memory

Sometimes the dependency is mutual
e Isolation
» some DBMS use the recovery component for transaction isolation



QI ENEEEETE|WANES TSI Transactions and Recovery

Technical Aspects

The logical concept transactions and recovery can be seen under (largely orthogonal) technical
aspects:

e concurrency control
e logging

As we will see, both are relevant for both logical concepts.



QI ENEEEETE|WANES TSI Transactions and Recovery

Multi User Synchronization

executing transactions (TA) serialized is safe, but slow

in serial execution, would block all other TAs

concurrent execution is desirable for performance reasons

But: simple concurrent execution causes a number of problems.

transactions are frequently delayed (wait for disk, user input, ...



S ] R
Lost Update

T T2
bot
ri(x)
— bot
ra(x)
wi(x) «
— wa(x)
commit —
— commit

The result of transaction T7 is lost.



gl
Dirty Read

Ty T
bot
— bot
r (X)
wa(x)
n (X) —
wi(y)
commit
— abort

T1 reads an invalid value x.



S ] R
Non-Repeatable Read

Ty T>
bot
r(x)
— bot
wa(x)
commit
rn (X) —

T1 reads the value x twice, with different results.



QI ENEEEETE|WANES TSI Transactions and Recovery

Phantom Problem

Ty T2
bot
select count(*)
from R;
— bot
insert into R .. _;
commit
select count(*) <
from R;

T1 sees a new tuple during hit second access.



QI ENEEEETE|WANES TSI Transactions and Recovery

Serial Execution

These problems vanish with serial execution
e a transaction always controls the whole DBMS
e no conflicts possible

e but poor performance

Instead: execute transaction as if they were serial
e if they behave as if they were serial they cause no problems
e concept is called serializable

e requires some careful bookkeeping



QI ENEEEETE|WANES TSI Transactions and Recovery

Formal Definition of a Transaction

e Possible operations of a TA T;
» ri(A): read the data item A
> w;(A): write the data item A
> a;: abort
» ¢;: commit successfully

> bot: begin of transaction (implicit)



QI ENEEEETE|WANES TSI Transactions and Recovery

Formal Definition of a Transaction (2)

e A TA T; is a partial order of operations with the order relation <; such that
> T; C {ri[x], wi[x] | x is a data item} U{a;, ¢;}
> g, T, iffgdT;
» Let t be a; or ¢;. Then for all other operations p;: p; <; t;
> If ri[x] € T; and w;[x] € T, then either r;[x] <; wj[x] or w;[x] <; ri[x]



QI ENEEEETE|WANES TSI Transactions and Recovery

Example

e transactions are often drawn as directed acyclic graphs (DAGs)
r2[x]

Wolz] —— ¢,
"2[)’]

° I’Q[X] <2 W2[Z], WQ[Z] <2 Cp, rz[X] <2 O, rg[y] <2 W2[Z], rz[y] <2 0
e transitive relationships are contained implicitly



Transactions and Recovery
Schedules

multiple transactions can be executed concurrently

this is captured by a schedule
a schedules orders the operations of the TAs relative to each other

due to the concurrent execution of operations the schedule defines only partial ordering



gl
Conflicting Operations

e operations that are conflicting must not be executed in parallel

e two operations are in conflict if both operate on the same data item and at least one of the
two is a write operation

T
T; | rilx] | wilx]
rilx] -
wilx] | — -




Transactions and Recovery
Definition of a Schedule

o Let T={Ty, Tp,..., Ty} be a set of transaction
e A schedule H over T is a partial order with order relation <y, such that
> H= U;’:l Ti

> <p2 UL <i
» For all conflicting operations p, g € H the following holds: either p <y gor g <y p



QI ENEEEETE|WANES TSI Transactions and Recovery

Example

nix] = wly] = wlz]l & o

T T T
H= nly]—= wx]—> wsly] > ws[z] > o
T

rfx] — wlx] — c



Transactions and Recovery
(Conflict-)Equivalence

e The schedules H and H' are (conflict-)equivalent (H = H'), if:
> both contain the same set of TAs (including the corresponding operations)
> both order conflicting operations of non-aborted TAs in the same way
e the general idea is that executing conflicting operations in the same order will produce the
same result



QI ENEEEETE|WANES TSI Transactions and Recovery

Example

RSl

nx] = wily] = nlz] = a = waly] =
rn[x] = rlz] = wily] = a = wly] = o
n(z] = n[x] = wily] = waly] = @ —» a
n(z] = nlx] = waly] = wily] = 2 = a



gl
Serializability

e serial schedules are safe, therefore we are interested in schedules with similar properties
e in particular we want schedules that are equivalent to a serial schedule

e such schedules are called serializable



Transactions and Recovery
Serializability (2)

e Definition

» The committed projections C(H) of a schedule H contains only the committed TAs
» A schedule H is serializable, if 3H, such that Hs is serial and C(H) = H;.



Transactions and Recovery
Serializability (3)

e How to check for serializability?

o A schedule H is serializable if and only if the serializability graph SG(H) is acyclic.



gl
Serializability Graph

e The serializability graph SG(H) of a schedule H = {T1,..., T,} is a directed graph with
the following properties

» the nodes are formed by the committed transactions from H
» two TAs T; and T; are connected by an edge from T; to T; if there exist two operations
pi € T;, qj € Ty, such that p; and g; are in conflict and p; <y g;.



QI ENEEEETE|WANES TSI Transactions and Recovery

Example

e Schedule H

H=w[x] = wily] = a — n[x] = nly] = w[x] = 2 = w3]y] = &

o SG(H)



QI ENEEEETE|WANES TSI Transactions and Recovery

Example (2)

e H is serializable
e equivalent serial schedules

T
I

oy
S
b



QI ENEEEETE|WANES TSI Transactions and Recovery

Example (3)
nix] — wlx] — wly]
T T
H= < nlx] = wely]
{

nlx] - wx] — o

T3
SG(H)= T 1

T1

%

%

a1

(&)



Transactions and Recovery
Example (4)

e H is serializable

e equivalent serial schedules

Hi=T,| T1| T3
H = H}



Transactions and Recovery
Example (5)

W1[X] — Wl[y] —

H= 1 )

nix] — wmly] - o

SGH)= T1 S T

e H is not serializable



S ] R
Additional Properties of a Schedule

e Besides serializability, other properties are desirable, too:

» recoverability
> avoiding cascading aborts: ACA
P> strictness

Recoverability is required for correctness, the others are more nice to have
(but are crucial for some implementations).



Transactions and Recovery
Additional Properties of a Schedule (2)

o Before looking at more properties, we define the reads-from relationship
e A TA T; read (data item x) from TA T;, if
> wjlx] < rilx]

> a; £ ri[x]
» if 3w [x] such that wj[x] < wi[x] < ri[x], then ax < ri[x]

e a TA can read from itself



QI ENEEEETE|WANES TSI Transactions and Recovery

Recoverability

e A schedule is recoverable, if
» Whenever TA T; reads from another TA T; (i # j) and ¢; € H, then ¢; < ¢;

e the TAs must adhere to a certain commit order

e non-recoverable schedules may cause problems with C and/or D of the ACID properties



Transactions and Recovery
Recoverability (2)

H = wi[x] r[x] waly] c2 a1

e H is not recoverable

o this has some unfortunate consequences:
> if we keep the updates from T, then the data is inconsistent (T, has read data from an
aborted transaction)
> if we undo T,, the we change committed data



QI ENEEEETE|WANES TSI Transactions and Recovery

Cascading Aborts

step T1 T> T3 Ty Ts
0.
1. wi [x]
2. ra[x]
3. waly]
4. r3[y]
5. ws3(z]
6. ralz]
7. wa[v]
8. rs[v]
9. | a1 (abort)




Transactions and Recovery
Cascading Aborts (2)

o A schdule avoids cascading aborts, if the following holds
» whenever a TA T; reads from another TA T; (i # j), then ¢; < ri[x]

e We must only read from transactions that have committed already.



QI ENEEEETE|WANES TSI Transactions and Recovery

Strictness

e A schedule is strict, if the following holds
> for any two operations w;[x] < o;[x] (with o;[x] = r;[x] or w;[x]) either a; < 0;[x] or ¢; < 0;[X]
e We must only read from committed transactions, and only overwrite changes made by
committed transactions.



Transactions and Recovery
Strictness (2)

e Only strict schedules allow for physical logging during recovery

x=0
wi[x,1] before image of T1: 0
x=1
wa[x,2] before image of Tp: 1
x =2

ai

2

When aborting T1 x would incorrectly be set to 0.



QI ENEEEETE|WANES TSI Transactions and Recovery

Classification of Schedules

all schedules Hg SR

RC Hg

ACA H7

ST Hg

serial schedules

Hi | Hyo | H3 | H4 || Hs

SR: serializable, RC: recoverable, ACA: avoids cascading aborts, ST: strict



Transactions and Recovery
Scheduler

e the scheduler orders incoming operations such that the resulting schedule is serializable and
recoverable.
e options:
> execute (immediately)
> reject
> delay
e two main classes of strategies:
» pessimistic
> optimistic



QI ENEEEETE|WANES TSI Transactions and Recovery

Pessimistic Scheduler

e scheduler delays incoming operations
e for concurrent operations, the scheduler picks a safe execution order

e most prominent example: lock-based scheduler (very common)



S ] R
Optimistic Scheduler

e scheduler executes incoming operations as quickly as possible
e might have to rollback later

e most prominent example: time-stamp based scheduler



gl
Lock-based Scheduling

e The main idea is simple:

» each data item has an associated lock

» before a TA T; accesses a data item, it must acquire the associated lock
> if another TA T; holds the lock, T; has to wait until T; releases the lock
> only one TA may hold a lock (and access the corresponding data item)

e how to guarantee serializability?



gl
Two-Phase Locking

e Abbreviated as 2PL

e Two lock modes:

» S (shared, read lock)
> X (exclusive, write lock)
» compatibility matrix:

held lock
acquired lock | none | S | X

5 VANE
X J I -1-=




QI ENEEEETE|WANES TSI Transactions and Recovery

Definition

before accessing a data item a TA must acquire the corresponding lock

e a TA must not request a lock that it already holds

if a lock cannot be granted immediately, the TA is put into a wait queue

e a TA most not acquire new locks once it has released a lock (two phases)

at commit (or abort) all held locks must be released



QI ENEEEETE|WANES TSI Transactions and Recovery

Two Phases

#locks

growing shrinking time

e growing phase: locks are acquired, but not released

e shrinking phase: locks are released, but not acquired



QI ENEEEETE|WANES TSI Transactions and Recovery

Concurrency with 2PL

Schritt T T remarks
1. BOT
2. lockX[x]
3. rx]
4. wlx]
5. BOT
6. lockS[x] T> has to wait
7. lockX[y]
8. r
9. unlockX[x] T> wakes up
10. r[x]
11. lockSJy] T> has to wait
12. wly]
13. unlockX[y] T> wakes up
14. rly]
15. commit
16. unIockSlx}
17. unlockS[y

commit




Transactions and Recovery
Strict 2PL

e 2PL does not avoid cascading aborts
e extension to strict 2PL:

> all locks must be held until the end of transaction
> avoids cascading aborts (the schedule is even strict)



Strict 2PL (2)

#locks

growing time

50 / 119



QI ENEEEETE|WANES TSI Transactions and Recovery

Lock Manager

locks are typically organized in a hash table

hash table




Transactions and Recovery
Lock Manager (2)

Traditional architecture:

e one mutex per lock chain

within the lock, separate locking/waiting mechanism

syncing chain mutex/lock latch needs some care to maximize concurrency

lock includes ownership and lock mode information

Separate per-transaction chaining
e needed for EOT

no latching required

but: can only be embedded easily for exclusive locks

e in general: keep the list external



Transactions and Recovery
Lock Manager (3)

One problem: EOT

e all locks have to be released

e lock list is available

e but puts a lot of stress on the lock manager
e chains may be scanned and locked repeatedly
e one option: lazy removal of lock entries

e allows for EOT without locking the chains



gl
Reducing the Lock Size

Locks a relatively expensive

typically 64-256 bytes per lock

thousands, potentially millions of locks

space utilization becomes a problem

e commercial DBMS limit the amounts of locks

One solution: use less locks
e space/granularity trade-off
e leads to MGL (as we will see)

® may Cause unnecessary aborts

Other option: reduce the size of locks



Transactions and Recovery
Reducing the Lock Size (2)

e standard locks contain a wait mechanism

e but when we use strict 2PL, we wait for transactions anyway
e it is sufficient to contain the owner in the lock

e we always wait for the owner

e shared locks are a bit problematic (requires some effort)

64 bit key \ 32 bit owner \ 32 bit status ‘

e status include lock mode, pending writes, etc.
e concurrently held require some care (linked list, spurious wakeups, etc.)
e but that is fine if the lists are short



QI ENEEEETE|WANES TSI Transactions and Recovery

Deadlocks
e Example:
T T2
bot
lockX1(a)
Wl(a)
— bot
lockS2(b)
r2(b)
lockX1(b) «
— lockSz(a)



Transactions and Recovery
Deadlock Detection

e no TA should have to wait “forever”
e one strategy to avoid deadlocks are time-outs
» finding the right time-out is difficult

e a precise method analyzes the waits-for graph

» TAs form node, edges are induced by waits-for relations
» if the graph is cyclic we have a deadlock



gl
Waits-for graph

o Example @ @
| s
OE—

o the waits-for graph is cyclic, i.e., we have a deadlock

e we can break the cycle by aborting T, or T3



QI ENEEEETE|WANES TSI Transactions and Recovery

Implementing Deadlock Detection

e timeouts are simple, fast, and crude

e cycle detection is precise but expensive

One alternative: use a hybrid approach
e use a short timeout
e after the timeout triggered, start the graph analysis
e build the wait-for graph on demand

Keeps the common case fast, deadlock detection is only slightly delayed.



gl
Online Cycle Detection

How to find cycles in a directed graph?
e simple solution: depth-first-search and mark
e we have a cycle if we meet a marked node
problem: O(n + m)
executed at every check

Better: use an online algorithm
e remembers information from last checks

e only re-computes if needed

Observation: a graph is acyclic if and only if there exists a topological ordering.



Transactions and Recovery
Online Cycle Detection (2)

e we start with an arbitrary topological ordering <

e when trying to add a restriction B < A, we perform a check

if B<rA
return true
marker[B]=2
if - dfs(A,B)
for each V € [A,B]
marker[V]=0
return false
shift(A, B)

e dynamically updates the ordering



Transactions and Recovery
Online Cycle Detection (3)

Depth-first search for contractions. Bounded by N and L.

dsf(N,L)
marker[N]=1
for each V outgoing from N
if V<7L
if marker[V]=2
return false
if marker[V]=0
if - dsf(V,L)
return false
return true



QI ENEEEETE|WANES TSI Transactions and Recovery

Online Cycle Detection (4)
Update the ordering

shift(B,A)
marker[B]=0
shift=0
L=<>
for each V € [A B]
if marker[V]> 0
L=Lo < V >
shift = shift +1
marker[V]=0
else
move V shift steps to the left
place the entries in L at B — shift



gl
Multi-Granularity Locking

e (strict) 2PL solves the mentioned isolation problems, except the phantom problem

e the phantom-problem cannot be solved by standard locks, as we cannot lock something
that does not exist

e we can solve this by using hierarchical locks (multi-granularity locking: MGL)



QI ENEEEETE|WANES TSI Transactions and Recovery

MGL
Database O

Segments
Pages

Records



Transactions and Recovery
Additional Lock Modes for MGL

S (shared): read only

X (exclusive): read/write

IS (intention share): intended reads further down

IX (intention exclusive): intended writes further down the hierarchy



QI ENEEEETE|WANES TSI Transactions and Recovery

Compatibility Matrix

requested

€

current lock

IS

IX

S

X
IS
IX

U8

I < 1 <Jw»n

N
N
Vv

L



QI ENEEEETE|WANES TSI Transactions and Recovery

Protocol

e Locks are acquired top-down

» for a S or IS lock all ancestors must be locked in IS or IX mode
» for a X or IX lock all ancestors must be locked in /X mode

e locks are released bottom-up (i.e., only if no locks on descendants remain)



QI ENEEEETE|WANES TSI Transactions and Recovery

Example

Database

Segments

Pages

Records

(T, X)

(Ty, IX)

(Ty, IX)

(T2 1S)

(T2, 15)

@ (T3, 1X)

(T2, S)

(T3, X)



The Classical Architecture

Example (2)

Database

(T 1X)
Segments

Pages Q

Records




Transactions and Recovery
Example (3)

e TAs T4 and Ts are blocked
e we have no deadlock here, but deadlocks are possible with MGL, too.



gl
Using MGL for Lock Management

Another important use for MGL: lock management

most DBMSs cannot cope with a huge number of locks

e usually an upper bound on the number of locks

e but MGL can reduce the load

e we can reduce the locks by locking higher hierarchy levels
e and then release the descendant locks

e allows for scaling the number of locks

But: can easily lead to deadlocks/aborted transactions.



gl
Preventing Phantom Problems without MGL

Another way to prevent the phantom problem: add a lock for the “next” tuple
e adds a lock for the “next” pseudo-tuple
e non-PK scans lock this tuple shared
e insert operations lock it exclusive

e prevents phantoms

But: we may want concurrent inserts
e another lock mode just for inserts
o if the TA scans+inserts, we really want exclusive
e gets a bit tricky

e but can be solved



S ] R
Timestamp Based Approaches

e timestamp based synchronization is an alternative to locking
e each TA is assigned a unique timestamp
e each operation of the TA is uses this timestamp

Assignment of timestamps varies (eager, lazy, ...), the simplest case is order by BOT.



QI ENEEEETE|WANES TSI Transactions and Recovery

Timestamps

o the scheduler uses the timestamps to order conflicting operations

» assume that p;[x] and gj[x] are conflicting operations
» pi[x] is executed before g;[x], iif the timestamp of T; is older than the timestamp of T;



Transactions and Recovery
Timestamps (2)

e the scheduler annotates each data item x with the timestamp of the last operations on x
e timestamps are stored separately for each type of operation g: max-g-scheduled(x)

e when the scheduler tries to execute an operator p, the timestamp of p is compared to all
max-g-scheduled(x) that conflict with p

e if the timestamp of p is older than any max-g-scheduled(x) the operations is rejected (and
the TA aborted)

e otherwise p is executed and max-p-scheduled(x) is updated



QI ENEEEETE|WANES TSI Transactions and Recovery

Commit Order

e using the basic timestamp approach might produce non-recoverable schedles
e we can guarantee recoverability by commiting TAs in timestamp order
e the commit of a TA T; is delayed as long as transaction from which T; has read are still

active.

Ideally, timestamps are given out in commit order
e hard to know beforehand

e one alternative: transaction reordering



QI ENEEEETE|WANES TSI Transactions and Recovery

Limitations

Timestamps are used only relatively rarely
e does not avoid the phantom problem
e aborts TAs if there is any indication of problems

e every read operations is implicitly a write (updating the timestamps)

But it also has some strength
e can synchronize an arbitrary number of items (unlike locks)

e easy to distribute/parallelize

Might become more attractive considering current hardware trends.



QI ENEEEETE|WANES TSI Transactions and Recovery

Snapshot Isolation

the DBMS has to keep track of all updates performed by a TA
needed to undo a TA

this information is usually available even after a TA committed

therefore the DBMS can (conceptually) remove the effect of any TA

This can be used to isolate transaction:
at BOT, the TA is assigned a timepoint T

all committed changes before are visible

all changes after T are removed from the data view

conceptually produces a snapshot of the data



Transactions and Recovery
Snapshot Isolation (2)

How to implement SI?
e makes use of the transaction log
e every page contains the LSN

e indicates the last change

pages with old LSN can be read safely

for pages with newer LSN the log is checked to eliminate recent changes



Transactions and Recovery
Snapshot Isolation (3)

Snapshot isolation has some very nice properties:
e no need for read locks (which could be millions)
e read operations never wait
e serializability (but see below)
Limitations:
e only safe for read-only transactions!

e a read-write transaction must not use snapshot isolation if the schedule has to be
serializable

e still, many systems use snapshot isolation even for r/w TAs



QI ENEEEETE|WANES TSI Transactions and Recovery

Recovery

e a DBMS must not lose any data in case of a system crash

e main mechanisms of recovery:

> database snapshots (backups)
> log files



Transactions and Recovery
Recovery (2)

e a database snapshot is a copy of the database at a certain point in time
e the Jog file is a protocol of all changes performed in the database instance

e obviously the main data, the database snapshots, and the log-files should not be kept on
the same machine...



QI ENEEEETE|WANES TSI Transactions and Recovery

System Failure

(T, 7,7}

Log File

S

restore

State 1

rollforward

State 2

(lost)

State 2



QI ENEEEETE|WANES TSI Transactions and Recovery

Main Memory Loss

State 2+

Log File

e problem: some TAs in {T;} where still active, some committed already

restart

e restart reconstructs state 2 + all changes by comitted TAs in {T;}



QI ENEEEETE|WANES TSI Transactions and Recovery

Aborting a Transaction

e log files can also be used to undo the changes performed by an aborted TA
e the functionality is needed anyway (system crash)
e can be used for “normal” aborts, too

We now look more closely at the implementation.



QI ENEEEETE|WANES TSI Transactions and Recovery

Classification of Failures

e |ocal failure within a non-committed transaction
» effect of TA must undone
» R1 recovery

o failure with loss of main memory

» all committed TAs must be preserved (R2 recovery)
» all non-committed TAs must be rolled back (R3 recovery)

e failure with loss of external memory
> R4 recovery



QI ENEEEETE|WANES TSI Transactions and Recovery

Storage Hierarchy

DBMS Buffer

Al

Cl

read

External Memory

Pc

write




Transactions and Recovery
Storage Hierarchy (2)

e Replacement strategies for buffer pages

» —steal: pages that have been modified by active transactions must not be replaces
> steal: any non-fixed pages can be replaced if new pages have to be read in



Transactions and Recovery
Storage Hierarchy (3)

e write strategies for committed TAs
» force strategy: changes are written to disk when a TA commits
> —force strategy: changed pages may remain in the buffer and are written back at some later
point in time



QI ENEEEETE|WANES TSI Transactions and Recovery

Effects on Recovery

force —force
e no redo | e redo
—steal
e no undo | e no undo
e no redo | e redo
steal

e undo e undo




gl
Update Strategies

e Update in Place

» each page corresponds to one fixed position on disk
P the old state is overwritten

e twin-block approach
PS Py, PY PL PY PL

I I N

e shadow pages

» only changed pages are replicated
» less redundancy than with the twin-block approach



QI ENEEEETE|WANES TSI Transactions and Recovery

System Configuration

In the following we assume a system with the following configuration
e steal
e —force
e update-in-place

e fine-grained locking



QI ENEEEETE|WANES TSI Transactions and Recovery

e The ARIES protocol is a very popular recovery protocol for DBMSs

e The log file contains:

» Redo Information: contains all information necessary to re-apply changes
» Undo Information: contains all information necessary to undo changes



QI ENEEEETE|WANES TSI Transactions and Recovery

Writing the Log

APy AP,
DBMS
Log-
DCBO":ES‘ Buffer
Log-File
Log-
Database- Archive
Buffer

3 o6
Database Archiv

e The log information stored written two times
» log file for fast access: R1, R2, and R3 recovery
> log archive: R4 recovery



QI ENEEEETE|WANES TSI Transactions and Recovery

Writing the Log (2)

e organization of the log ring-buffer:

Log-File

Log-

write back

Archive



QI ENEEEETE|WANES TSI Transactions and Recovery

Writing the Log (3)

e Write Ahead Log Principle

» before a transaction is committed, all corresponding log entries must have been written to

disk
» before a modified page is written back to disk, all log entries involving this page must have

been written to disk

e this is called forcing the log

Required for Durability.



Transactions and Recovery
Writing the Log (4)

Some care is needed when writing the log to disk
e disks are not byte addressable
e larger chunks, usually 512 bytes
e remember, the system may crash at any time
e partial writes to the last block are dangerous
e might require additional padding when forcing the log

o related problem: partial page writes

Some of these issues can be solved by hardware.



QI ENEEEETE|WANES TSI Transactions and Recovery

Restart after Failure

crash

e TAs like Ty are winner transactions: they must be replayed completely

e TAs like T, are loser transactions: they must be undone



Transactions and Recovery
Restart Phases

e Analysis:
» determine the winner set of transactions of type Ty
» determine the loser set of transactions of type T>.

e Repeating History:

» all operations contained in the log are applied to the database instance in the original order
e Undo of Loser Transactions:

P the operations of loser transactions are undone in the database instance in reverse order



Transactions and Recovery
Restart Phases (2)

1. Analysis

\

2. Redo of all changes (Winner and Loser)

3. Undo of all changes from Loser transactions

A




gl
Structure of Log Entries

[LSN,TA,PagelD,Redo,Undo,PrevLSN]

e Redo:

» physical logging: after image

> logical logging: code that constructs the after image from the before image
e Undo:

» physical logging: before image

» logical logging: code that constructs the before image from the after image



Transactions and Recovery
Structure of Log Entries (2)

e LSN (Log Sequence Number),
» a unique number identifying a log entry
» LSNs must grow monotonically
» allows for determining the chronological order of log entries
> typical choice: offset within log file (i.e., implicit)
e TA

> transaction ID of the transaction that performed the change



Transactions and Recovery
Structure of Log Entries (3)

e PagelD

» the ID of the page where the update was performed
» if a change affects multiple pages, multiple log records must be generated

e PrevLSN,

» pointer to the previous log entry of the corresponding transactions
» needed for performance reasons

Note: often there is a certain asymmetry: physical redo (one page), logical undo (multiple
pages)



QI ENEEEETE|WANES TSI Transactions and Recovery

Example

T T, Log
[LSN, TA,PagelD,Redo,Undo,PrevLSN]

1. BOT [#1, T1,BOT, 0]
2. r(A, a1)
3. BOT [#2, T2, BOT, 0]
4. r(C, )
5. a;:=a; — 50
6. w(A, a1) [#3, T1, Pa, A—=50, A+=50, #1]
7. c = ¢ + 100
8. w(C, ) [#4, T2, Pc, C+=100, C—=100, #2]
9. I’(B, b1)
10. by := by + 50
11. w(B, b1) [#5, T1, Pg, B+=50, B-=50, #3]
12. commit [#6, T1, commit, #5]
13. r(A, az)
14. ay = ay —
15. w(A, a) [#7, Ta, Pa, A-=100, A+=100, #4]
16. commit [#8, To, commit, #7 |




gl
The Phases - Analysis

the log contains BOT, commit, and abort entries

the log is scanned sequentially to identify all TAs

e when a commit is seen, the TA is a winner

when a abort is seen, the TA is a loser

TAs that neither commit nor abort are implicitly loser

Winner have to be preserved, loser have to be undone



Transactions and Recovery
The Phases - Redo

Redo brings the DB into a consistent state
e some changes might still be in main memory at the crash ( force)
e changes can be incomplete (e.g., B-tree split)

e but the log contains everything

Redo is done by one forward pass
e all log entries contain the affected page
e the pages contain LSN entries
o if the LSN of the page is less than the LSN of the entry, the operation must be applied
e the LSN is updated afterwards!

e allows for identifying the current state

Afterwards the DB has a known state.



Transactions and Recovery
The Phases - Undo

Eliminates all changes by loser transactions.
e during analysis, DBMS remembers last LSN of each transaction

e transactions that aborted on their own can be ignored
(no “last operation”, all undone)

e active TAs have to be rolled back

Log is read backwards
o lastLSN pointers are used for skipping
e all encountered operations are undone

e produces new log entries (redo the undo)



QI ENEEEETE|WANES TSI Transactions and Recovery

Idempotent Restart

undo(undo(- - - (undo(a))- - -)) = undo(a)
redo(redo(- - - (redo(a))- - - )) = redo(a)




QI ENEEEETE|WANES TSI Transactions and Recovery

|dempotent Restart (2)

Redo Undo

@
T

UndoNextLSN _

e CLRs (compensating log records) for undone changes
o #7'is a CLR for #7
o #4' is a CLR for #4



gl
Log Entries after Restart

[#1, T1,BOT, (]
[#2, T,,BOT, 0]

[#3, T1, Pa, A—=50, A+=50, #1]
[#4, T2, Pc, C+=100, C—=100, #2]
[#557 Tl, PB7 B+:50, B—:SO, #3]
[#6, T1, commit, #5]

[#7, T2, Pa, A—=100, A+=100, #4]
(#T7', T, Pa, A+=100, #7, #4)
(#4', Ty, Pc, C—=100, #7', #2)
(#2', Ty, —, —, #4',0)

e CLRs are marked by (...)



QI ENEEEETE|WANES TSI Transactions and Recovery

e a CLR is structured as follows
> LSN
TA
PagelD
Redo information
PrevLSN
UndoNxtLSN (pointer to the next operation to undo)

vVvVvyyvyy

e no undo information (redo only)

e prevLSN/undoNxtLSN could be combined into one
(prevLSN is not really needed)



Transactions and Recovery
Partial Rollback

s MO X O O— -
() —)—(— -

e Steps 3 and 4 are rolled back

e necessary to implement save points within a TA



QI ENEEEETE|WANES TSI Transactions and Recovery

Checkpoints

T, |

Ts

crash

checkpoint

i

checkpoint S;

checkpoint S;

time

\



Transactions and Recovery
Checkpoints (2)

e transaction consistent:

checkpoint

S A —

Log

Analysis

\/

Redo

Undo




Transactions and Recovery
Checkpoints (3)

e action consistent:

checkpoint
Log —@ L L L L L L L L
Analysis
Redo
MinLSN >
Undo




Transactions and Recovery
Checkpoints (4)

crash

Tle e o o

Tl —e ° °

T e—o—o > o °

Ts

+ime

\J



Transactions and Recovery
Checkpoints (5)

o fuzzy checkpoints:

checkpoint
log —® ° ° ° ° ° ° ° °
Analysis
MinDirtyPageLSN >
Redo
MinLSN [F---mm- - >
Undo




gl
Fuzzy Checkpoints

modified pages are not forced to disk

only the page ids are recorded

Dirty Pages=set of all modified pages

MinDirtyPageL SN: the minimum LSN whose changes have not been written to disk yet



	The Classical Architecture
	Transactions and Recovery


