Data Processing on Modern Hardware

Introduction

Jana Giceva

About me

Jana Giceva

Chair for Database Systems
Boltzmannstr. 3, Office: 02.11.043

jana.giceva@in.tum.de

Academic Background:

® 2006 — 2009
® 2009 — 2011
" 2011 - 2017
® 2017 - 2019

® Since 2020

BSc in Computer Science at Jacobs University Bremen

MSc in Computer Science at ETH Zurich

PhD in Computer Science at ETH Zurich (topic: DB/OS co-design)
Lecturer in Department of Computing at Imperial College London
Assistant Professor for Database Systems at TUM

Connections with Industry:

® Held roles with Oracle Labs and Microsoft Research in the USA in 2013 and 2014
® PhD Fellowship from Google in 2014

® Early Career Faculty Award from VMware in 2019

mailto:jana.giceva@in.tum.de

What this course Is about TUTI

® Make programs run faster on modern multi-core CPUs using a variety of techniques:
— Optimizing the data structures and algorithms for the memory hierarchy
— Vectorization
— Parallelizing algorithms
— Efficient synchronization of data structures

® Learn how to best leverage new hardware technologies
— Accelerators (e.g., FPGAs, modern NICs, etc.)
— Low-latency high-bandwidth networks
— Non-volatile memory

® Apply the knowledge with hands-on work:
— Understand what is happening under the hood, i.e., in the CPU,
— Do performance analysis and debugging, and
— Optimize your algorithms and data structures to run well both in isolation and alongside other programs

A motivating example (memory access)

Task: sum up all entries in a two-dimensional array

Alternative 1: Alternative 2:

for (r = 0; r < rows; r++) L for (¢ = 0; ¢ < cols; c++)
for (¢ = 0; ¢ < cols; c+;;:::><::1‘* for (r = 0; r < rows; r++)

sum += srcl[r * cols + c]; sum += src[r*cols + c];

Both alternatives touch the same data, but in different order.

A motivating example (memory access)

Task: sum up all entries in a two-dimensional array

cols
10° 10% 107 10° 10> 10* 10® 102 10' 109
100s : t t } o } t : 100s
50s + + 50s
(D] []
E . kR
+ o o L]
c 20s 1 ® oo . + 20s
e .
-0 1 BE
3 10s 1o If not careful, 50x *® 10s
x L4 .
%c: 5g " . slower execution 1 5s
E .. ® g ..
25 | q Il -“. I 25
BNl B EEE EEE EEE EEN BN
1s % | 1s

rows

10 10! 102 103 10* 105 106 107 108 10°

Alternative 2 iterates over the
elements column-wise, and its
performance is highly dependent
on whether the working set size
fits in the memory hierarchy.

Alternative 1 iterates over the
elements row-wise, which is more
friendly to the underlying micro-
architectural features.

A motivating example (multi-core) TUT

Task: run multiple parallel instances of the query

SELECT SUM(lo revenue) I>|4
FROM ©part, lineorder ‘ AN
WHERE p partkey = lo partkey o lineorder
AND p category <= 5 |

part

To implement the join (x) use either:
® a hash join or
® anindex nested loops join

Co-execute the independent instances on different CPU cores and compare performance to baseline
when they are run in isolation.

Results from “Lee, Ding, Chen, Lu, and Zhang. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009

A motivating example (multi-core) TUT

Task: co-run independent join algorithms on different CPU cores

Some algorithms are more

HJ alone sensitive to noisy environments
(victims) and their performance
HJ + HJ can be significantly affected if
HJ & INLJ collocated with a bad neighbor.
INLJ alone
One can either design algorithms
INLJ + HJ which are robust, or leverage
novel hardware features like
INLJ + INLJ Intel’s Resource Directory
, , ‘ Technology (RDT) for resource
6OI % 40' % 20‘ % 0% allocation and perf. isolation.

performance degradation

Results from “Lee, Ding, Chen, Lu, and Zhang. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009

A motivating example (accelerators)

Task: run the following regular-expression queries

Ql: SELECT count (*) FROM address table
WHERE address string LIKE ‘%Strasse%’;
Q2: SELECT count (*) FROM address table
WHERE REGEXP LIKE(address string, ‘(Strasse|Str.\.).*(8[0-9]1{4})");
Q3: SELECT count (*) FROM address table
WHERE REGEXP LIKE (address string, ‘[0-9]+ (USD|EUR|GBP)");
Q4: SELECT count (*) FROM address table
WHERE REGEXP LIKE(address string, ‘[A-Za-z]{3}\:[0-9]{4}");

And compare the performance of CPU-only vs. FPGA-enhanced DBMS.

Results from “Sidler, Istvan, Owaida, Alonso. Accelerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures” SIGMOD 2017

A motivating example (accelerators)

Task: run the following regular expression queries

—&— DBx —e— FPGA

O - but are a great match for accelerators
j ' ' M-S 45}’2’3‘4 like FPGASs.
10"

:3) 10° Regular expression matching is
5 notoriously expensive to evaluate
3 1 on CPUs,

10~

1072

1 2 3 4 5 6 7 8 9 10

Number of Clients

Results from “Sidler, Istvan, Owaida, Alonso. Accelerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures” SIGMOD 2017

Course content Tm

® Cache awareness
— How to place data in memory and access it in a way that makes optimal use of memory caches?

® Query execution
— How can we tune our algorithms to fit modern processor architectures?

® Multi-core architectures
— How can we exploit the parallelism provided by multicore architectures?
— What should we be careful of? Synchronization? NUMA? Interference?

® Specialized hardware
— When should we use accelerators and how to choose the right one for data processing?

® Working with modern network and storage technologies
— InfiniBand / RDMA and Persistent Memory / NVRAM

10

Course Organization

Lecture:

® Recorded videos uploaded by 8am. Check the lecture’s Moodle webpage.

® Course website: http://db.in.tum.de/teaching/ss21/dataprocessingonmodernhardware/
® Please check regularly for updates

Tutorials:

® Interactive video web-conference at: https://bbb.rbg.tum.de/jan-tk9-mzh

® Wednesdays, 10.30-12h

® Led by your TA: Alice Ray, M.Sc. (alice.rey@tum.de)

® First session: today in-person introduction, Q&A session and general set-up
® Consider that exercise material is part of the course content!

11

https://www.moodle.tum.de/course/view.php?id=68058
http://db.in.tum.de/teaching/ss21/dataprocessingonmodernhardware/
https://bbb.rbg.tum.de/jan-tk9-mzh
mailto:alice.rey@tum.de

Assessment (Homework, Project, Exam) TUT

® The main goal of the course is doing the exercises and understanding the
material, but there will be an exam.

® You will get a 0.3 increase in your grade, if you solve and submit the exercises.
— We will discuss the solutions in the tutorial sessions.

® There will be a 4-5 week long individual project in the last part of the lecture.
— The project will give you an additional bonus for the exam (more info in the tutorial).

¥ The Exam: TBD

— Depending on the situation, it may be online and will most likely be an oral 20min exam.

12

Course set-up Tm

Let’s try to make the course as interactive as possible given the circumstances and TUM’s regulations.
® During the tutorials, please speak-up, ask questions and discuss!

® Engage in asynchronous discussions on Mattermost

® Ask questions for topics you'd like to be addressed during the tutorial sessions

The material we discuss is relevant in practice:
® We will provide examples and exercises
® You will achieve the maximum fun factor if you try using the techniques on your machine
— for some assignments and for the project, you may get access to a modern server machine

13

Course material

This is not a standard course — it is state of the art (bleeding edge) systems and research
® There is no real textbook for this course, only for the basics

® Computer architecture basics are covered in
— “Computer Architecture: A Quantitative Approach” by Hennessy and Patterson.
— “Computer Systems: A programmer’s perspective” by Bryant and O’Hallaron

® The lecture slides are available online

® Most material that we are going to cover is taken out of research papers:
— The references to those papers will be given as we go
— They are all good and easy (and fun!) to read papers.

® We'll invite industry speaker(s) to share their experiences towards the end of the course.

14

Hardware trends

15

Hardware trends

42 Years of Microprocessor Trend Data

T T T T Y
107 | PN
| A A4 4
6 L ey A A
0 | Fy | is
: A ALR,
105 1 """ A?A“‘ """ .“ o0
. Aﬁ‘ ..3‘: .;Qh
Single-threaded performance used =+ {f *..Q' }
to double every 18-22 months. ::6‘3‘“'!*“-“-.
e : : [
f A gl | .
102 b A A A ® Tt T IY w'vv‘ztif M
A .:fl "'vz v v e 'i ot
1ol b WY Yt ¥ e A Rt i
R B B DY A
Ao vy wovy snnoe®
10° _;, S S N R e R R e
| | ! !
1970 1980 1990 2000 2010
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F
New plot and data collected for 2010-2017 by K. Rupp

Transistors
(thousands)

Single-Thread
Performance

| (SpecINT x 10%)

Frequency (MHz)

Typical Power

1 (Watts)

Number of
Logical Cores

2020

Since 2004, chips offer more and
more parallelism (esp. on servers).

TUTI

Slowing down of Moore’s law.

Now, single-threaded performance
is stagnating!

End of Dennard scaling in 2004!

16

Effect 1: Increasing parallelism TUT

® Since the end of Dennard scaling in 2004, historic switch for the microprocessor industry to
Increase core count instead of single processor’s efficiency

® Go from relying solely on instruction level parallelism (ILP) to
data-level parallelism (DLP) and thread-level parallelism (TLP).

60 S
Scalable II Major implications for software:
(Cascade Lake)
50
- Previously hardware and compiler could
40 - - - . . y
z implicitly exploit ILP without the programmer’s
3 attention and help.
o % Broadwell Scalable |
[e) (Skylake) o
© % — - TLP and DLP, however, are explicitly parallel
vyBridge . . .
Dunnihgton and require restructuring of the application so
10 Kentsfield Westmere that it can exploit the parallelism
Conroe Nehalem
0
2004 2006 2008 2010 2012 2014 2016 2018 2020
Year

17

Effect 1: increasing parallelism

® In addition to core count, which exploits thread-level parallelism (TLP)

® The issue width of vectorized instructions has significantly increased to exploit
data-level parallelism (DLP) within general purpose processors

¥ Intel's SIMD (Single Instruction Multiple Data) evolution summarized:
— 1997: MMX 64-bit (Pentium 1),
— 1999: SSE 128-bit (Pentium 3),
— 2011: AVX 256-bit f1oat (Sandy Bridge)
— 2013: AVX2 256-bit int (Haswell),
— 2017: AVX-512 512-bit (Skylake)

® And the increase of popularity and use of Vector and GPU architectures

18

Effect 2: hitting the Memory wall

® The memory bandwidth does not increase as fast as the core count

NetBurst (Foster)
[] LJ
NetBurst (Paxville)
— 101
o
g Core (Kentsfield)
o [}
]
Q
=
o
Q
= [
fg Sandy Bridge EP
2 5 Core (Lynnfield)® @Nehalem (Beckton).
S 4
Q lvy Bridge EP
z Nehalem (Wesimere EX Haswel EP @
é ehalem (Westmere EX) . Y Skylake SP
o []
Ivy Bridge EX Broadwell EX
04
2000 2004 2008 2012 2016

year

img src: http:/db.in.tum.de/teaching/ws1718/dataprocessing/chapterl.pdf by Dr. Viktor Leis

Memory has become the new disk

Need for multi-tier cache hierarchy, and

Careful use of registers and the cache hierarchy

But, caches bring their own benefits and pitfalls:
Pollution, MESI protocol, timing attacks

19

http://db.in.tum.de/teaching/ws1718/dataprocessing/chapter1.pdf

Effect 3: towards Hardware Specialization

Dark Silicon:
® The end of Dennard scaling

TUTI

— Modern CPUs already have close to 10 billion transistors, impossible to power all at the same time

® Alternative 1: more cores, but at lower frequency

— e.g., Intel's Xeon Phi. But, Amdahl’s law

® Alternative 2: many specialized, heterogeneous cores and function units

Domain specific architectures (DSAs)*
® GPUs, TPUs, NPUs, FPGAs, ASICs, etc.

Active hardware:

® smart storage, smart NICs, programmable
switches, processing-in-memory, smart DMA
engines, programmable memory controllers?

smart DMA/accelerators on the Memory controller

On-chip network

smart NICs
HEEEN

o 1

SoC accelerators (e.g., GPU, FPGA)

near-memory
computing @)

Kol
(2

smart
storage

*_https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext 20

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Example hardware specialization today TUT

® Historical: Only specialized HW before rise of general purpose

— Gamma database machine, Lisp machine Oracle’s SQL in Silicon — SPARC M7

cojcijc2lc3
[g = B = i =
12D Cache L2 D Cache

c4| cC5|1ce|cCT
[I 5 i =
L2 D Cache L2 D Cache
[(2iCache |

® Today on the market:
— Special instructions: AES encryption, video decoding ——

L3 Cache 8MB L3 Cache 8MB

Accelerator
Accelerator

— Graphics Processing Units (GPUS) — e vt
— Accelerated Processing Units (APU, by AMD) Qﬁ:g

— Oracle Sparc T7, M7 (data analytics accelerators DAX) =l e | B

— Google’s Tensor Processing Unit (TPU) | c

— Field-Programmable Gate Arrays (FPGAS) oA Conaencerscasity ks |
— SSDs with embedded FPGA or ARM cores o mnTess B Zruc:gﬁriztglzapen

— Programmable switches with P4 decompression

— FPGA enhanced NICs » Eloomi-fiter

* Predicate evaluation
* Filtering by bit-vector
® Also today: many ongoing research and industry projects * Encryption

Ll

Accelerators are transforming the Cloud UM

Microsoft’s Azure configurable cloud (MICRO’16) Amazon’s FPGA-acceleration using F1 (HotChips’17)

12 D Network switch (top of rack, cluster) An F1 instance
can have any
i b —— FPGA - switch link EC2F1 number of AFls
&7 FPGA acceleration board Afnazon Instance AR AR Gan b
 BE —— NIC~-FPGA link Machine loaded into the
£7 2-socket CPU server 2-socket server blade Image (AM|) FPGA in less than
Amazon FPGA 1second
Datacenter hw acceleration plane Image (AFI)
TOR
2 hetofks’ Expensive”
- compression
Web'sesrch ~ Arririd o il - >
a”. i s S A 57 T Z
4
49y 4
w7
1)43 Vsl
IF4AD 4D 4D 4 Papapa Vs
P A AD A Al 4D AD 4 AD 4 A -
AT AT AT AT 4 L7as 2zt FPGA Link . amazon
Traditional sw (CPU) server plane

1 webservices

Google’s TPU 3 0 pods (Google 1/0 2018)

it

22

Implications for (future) system design

® How do we program them?
— What is the interface?
— Domain specific languages?

® What is the role of compilers?
® How do we decide which computation to offload? Optimizers?

® Who manages the accelerators/active hardware (e.g., OS, application, runtime)?
— Should they be context-switched?
— How do we virtualize them?
— How do they fit in data-center resource disaggregation picture?
— Good match for serverless functions?

® What is the failure domain?

23

Intel Scalable 2"d generation Processors TUTI

In our group we have a new generation Scalable Processor Intel Xeon-Gold 6212U (formerly Cascade Lake)

Basic specifications:

® CPU clocked at 2.4 GHz with 24-cores (48 threads)

® with 192GB DRAM (6 x 32GB DDR4 at 2933 MHz), non-inclusive LLC, UPI interconnect
® and 768GB of PMEM (6 x 128GB Intel Optane DC Persistent Memory)

Advanced technologies:
® Vectorization:
— SSE4.2, AVX, AVX2, AVX-512
® Transactional memory:
— Synchronization Extensions (TSX)
® Resource allocation and management:
— Resource Director Technology (RDT)
® Security extensions:
— Fast and secure data encryption/decryption (AES), Page and Memory Protection Keys (MPX),
Trusted Execution Technology (SGX)

https://ark.intel.com/content/www/us/en/ark/products/192453/intel-xeon-gold-6212u-processor-35-75m-cache-2-40-ghz.html
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview 24

https://ark.intel.com/content/www/us/en/ark/products/192453/intel-xeon-gold-6212u-processor-35-75m-cache-2-40-ghz.html
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview

AMD EPYC Infinity Architecture Processors TUTI

AMD EPYC 7002 Series Processor 7H12:

® based on AMD Infinity Architecture

® CPU clocked at 2.6 GHz (with 64 cores per SoC, 128 threads)
® With up to 4TB DRAM at 204GB/s using 128 PCle 4.0 lanes

® Large 256 MB LLC

Advanced technologies:
® AMD Infinity Guard

— Secure Memory Encryption (SME)
— Secure Encrypted Virtualization (SEV)

src: https://www.amd.com/system/files/documents/TIRIAS-White-Paper-AMD-Infinity-Architecture.pdf
Check more details at “A Deep Dive Into AMD’s ROME EPYC Architecture” article by Timothy Morgan
https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/

25

https://www.amd.com/system/files/documents/TIRIAS-White-Paper-AMD-Infinity-Architecture.pdf
https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/

Beyond CPU trends and Accelerators

® Persistent Memory (PMEM)

— byte-addressable memory device that resides on the memory bus
— can have DRAM-like access to data (similar latency as DRAM)

— while non-volatile like NAND flash.

— Examples: NVDIMM and Intel’s 3D Xpoint DIMMs (Optane DC persistent memory modules)

src: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

® Low-latency high-bandwidth networks
— InfiniBand (IB) is a networking standard used in HPC that
has very high throughput and low latencies
— HDR already offers 200-600 Gb/s
— Blurring the boundaries between a single machine

and a cluster
src: https://www.mellanox.com/products/infiniband-switches/QM8700

Link Bandwidth per direction, Gb/s

10,000

1,000

100

10

{=> INFINIBAND"
> .

4x

1X

1.
600G
FDR 4006 &
QDR 2 168G Z%
X ey 100G
G

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.mellanox.com/products/infiniband-switches/QM8700

Beyond CPU trends and Accelerators

® Computational Storage
— Architectures that performs computation where data
Is stored, offloading host processing and reducing
data movement.
— Integration of compute resources, near the storage
or between the host and storage

Src: https://www.snia.org/education/what-is-computational-storage

® In-network computing
— via Programmable Switches (e.g., using P4)
— Industry vendors: Barefoot Tofino, Cavium
Xpliant, Cisco Quantum Flow, etc.

22222222’
Programmable Parser

src: https://barefootnetworks.com/products/brief-tofino/

(=)

ontroller}

(=)

m<— API definitions here

E

.

TUTI

Computational Storage Architecture

Move Compute Closer to Storage

=

csp

[z

csp

V2

CSD=Computational Storage Drive

27

tdddd i

https://www.snia.org/education/what-is-computational-storage
https://barefootnetworks.com/products/brief-tofino/

References Tm

In addition to cross-references provided in the slides

Some material based on:
® Lecture notes by Prof. Viktor Leis and Prof. Jens Teubner
® Research talks and papers from DaMoN, HotChips, SIGMOD, VLDB, ADMS, MICRO, ISCA, etc.

Interesting videos:
® A New Golden Age for Computer Architecture, a Turing-award lecture by Patterson and Hennessy
® Clouds, catapults and life after the end of Moore’s Law with Dr. Doug Burger — Microsoft Research

Useful material in general for the course at:

® Intel’'s Software Developer’s Manuals

¥ Intel's Top-Down Micro-architectural Analysis Method

® Anger Fog’s Software optimization resources

® Ulrich Drepper’s What every Programmer needs to know about Memory
® Godbolt — the compiler explorer (https://godbolt.org/)

28

https://godbolt.org/

