

ПШ

Grundlagen des relationalen Modells

Seien D_1 , D_2 , ..., D_n Domänen (~Wertebereiche)

Relation: $R \subseteq D_1 \times ... \times D_n$ Teilmenge des Kreuzprodukts

Bsp.: Telefonbuch \subseteq string x string x integer

Name X Adresse X Telefon#

ПΠ

Tupel: $t \in R$

Bsp.: *t* = ("Mickey Mouse", "Main Street", 4711)

Schema: legt die Struktur der gespeicherten Daten fest

Bsp.:

Telefonbuch: {[Name: string, Adresse: string, Telefon#:integer]}

Telefonbuch

Name Straße Telefon#

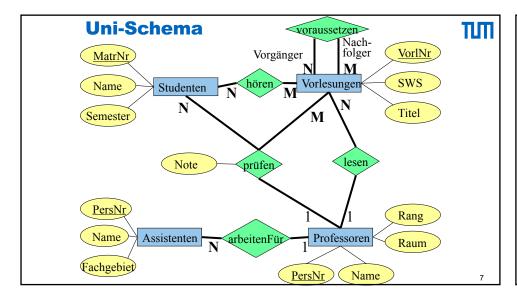
Mickey Mouse Main Street 4711

Minnie Mouse Broadway 94725

Donald Duck Broadway 95672

...

•Ausprägung: der aktuelle Zustand der Datenbasis


•Schlüssel: minimale Menge von Attributen, deren Werte ein Tupel eindeutig identifizieren

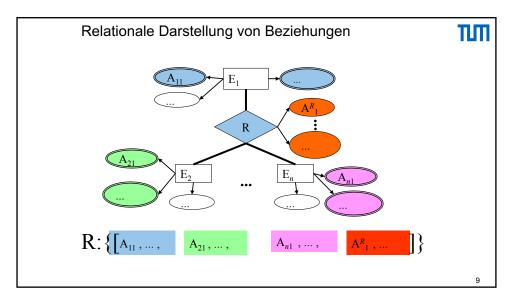
•Primärschlüssel: wird unterstrichen

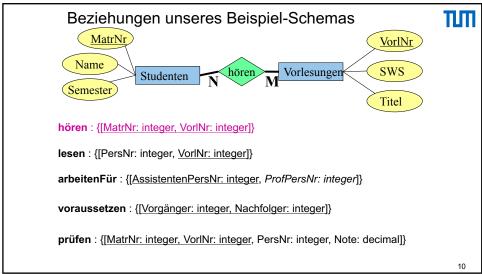
•Einer der Schlüsselkandidaten wird als Primärschlüssel ausgewählt

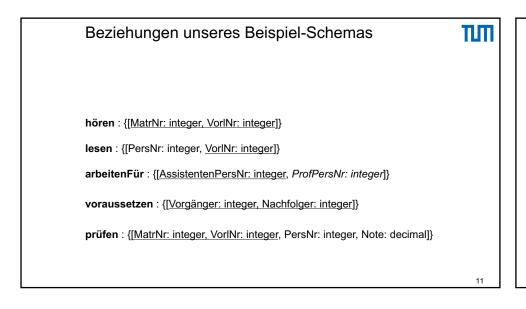
•Hat eine besondere Bedeutung bei der Referenzierung von Tupeln

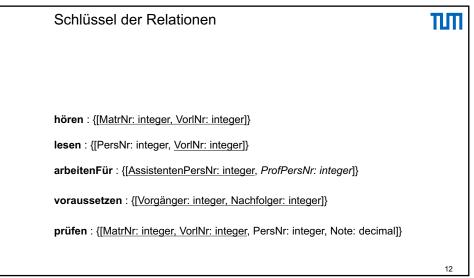
6

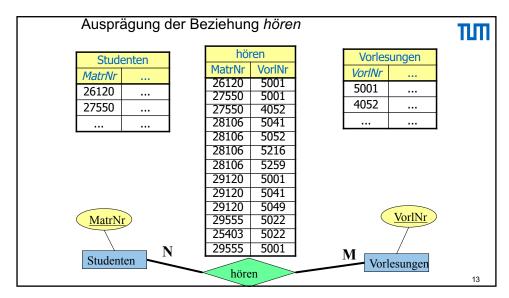
Relationale Darstellung von Entity-Typen

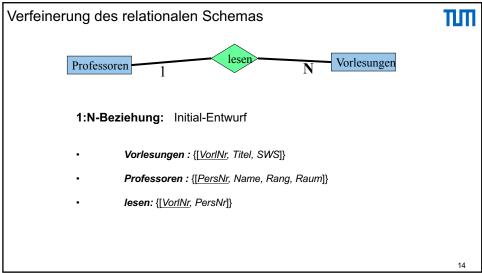

ТИП

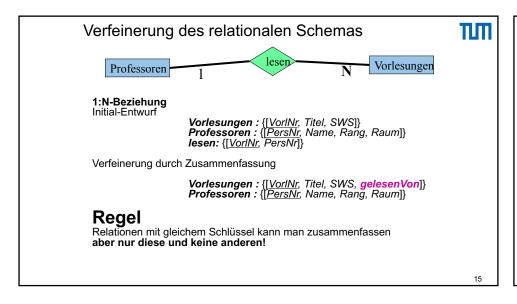

Studenten: {[MatrNr:integer, Name: string, Semester: integer]}

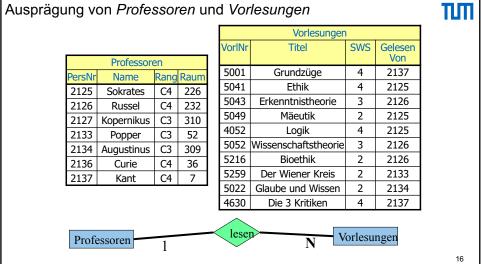

Vorlesungen: {[VorlNr:integer, *Titel*: string, SWS: integer]}

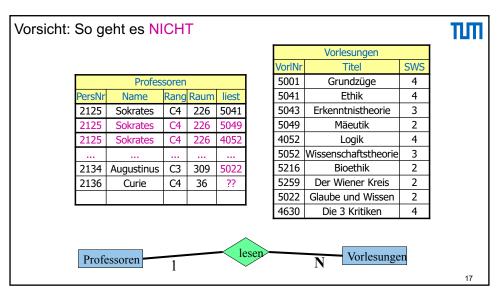

Professoren: {[PersNr:integer, Name: string, Rang: string, Raum: integer]}

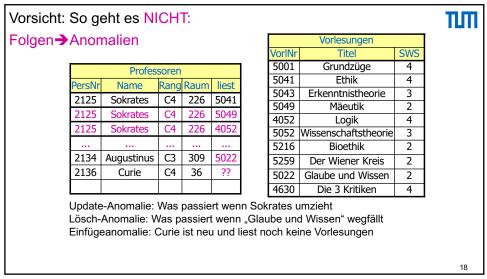

Assistenten: {[PersNr:integer, Name: string, Fachgebiet: string]}

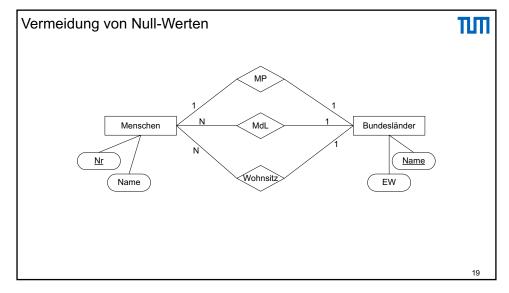


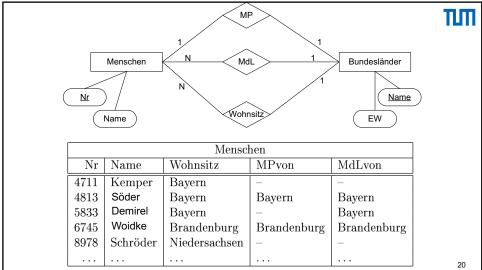




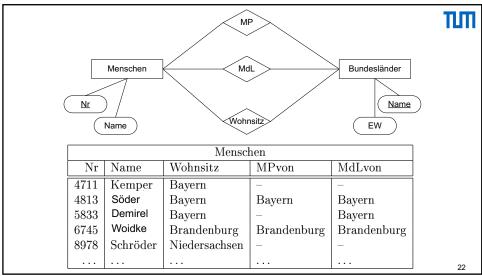


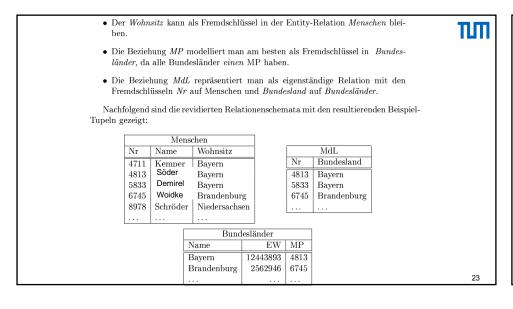


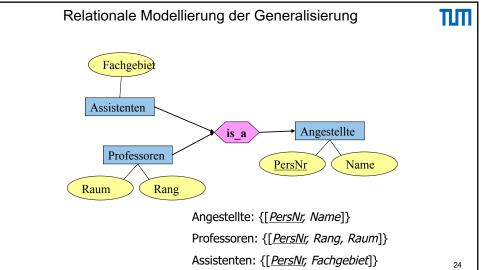


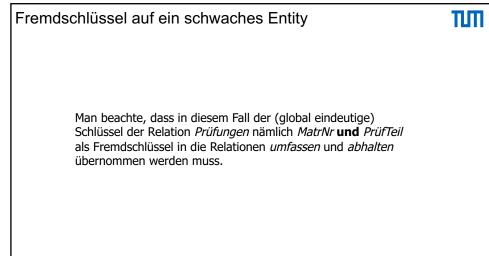


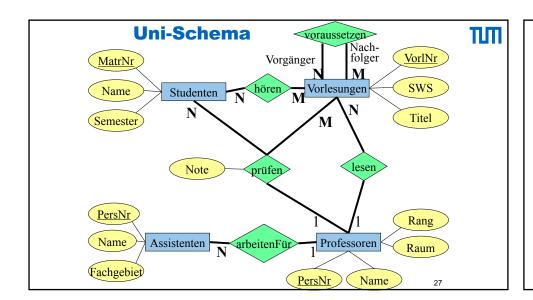


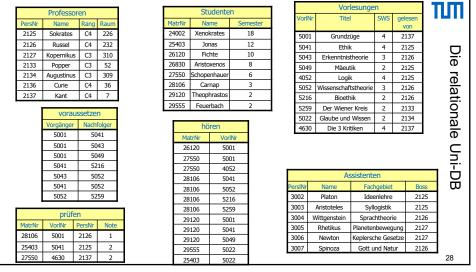


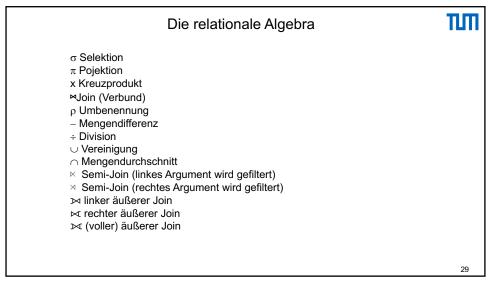


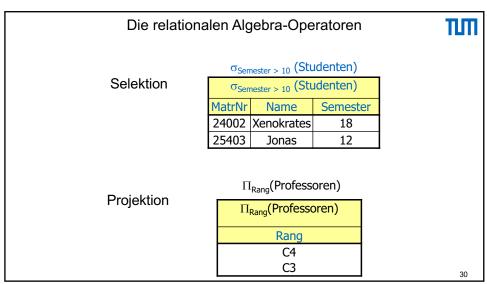


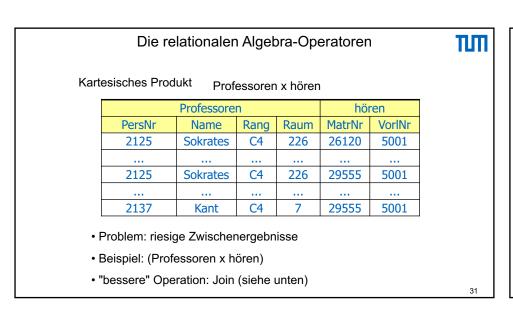


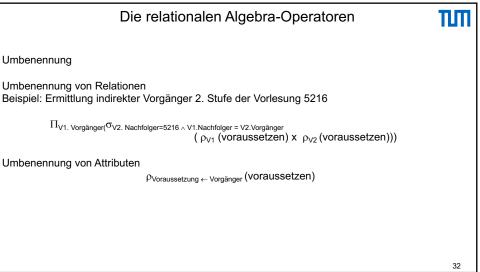


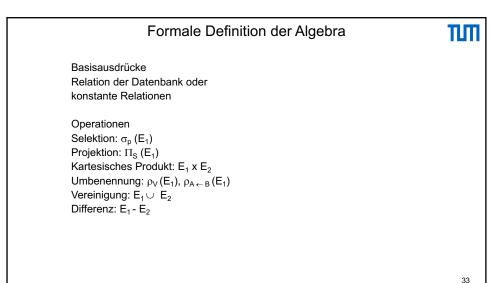


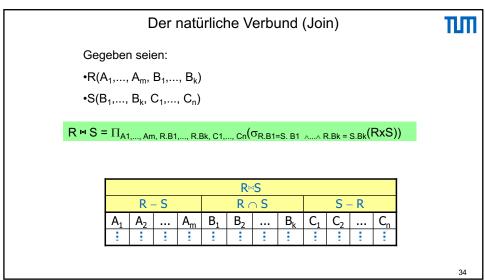


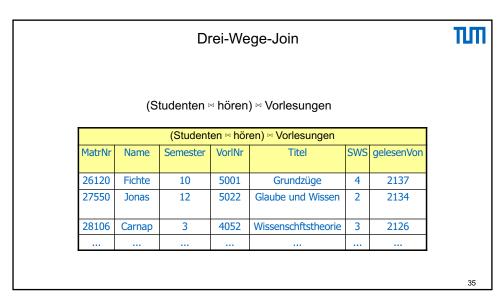


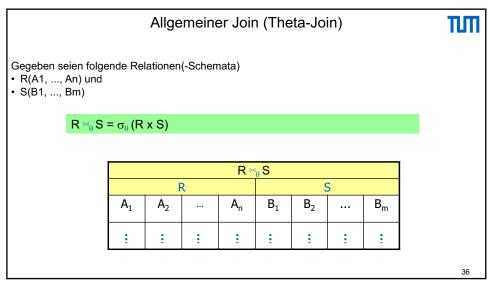


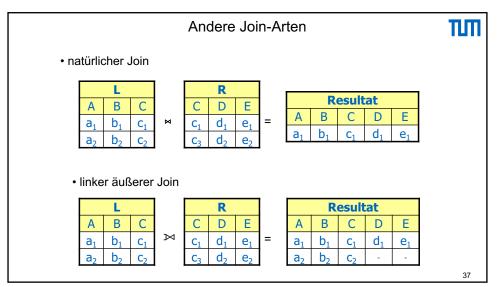


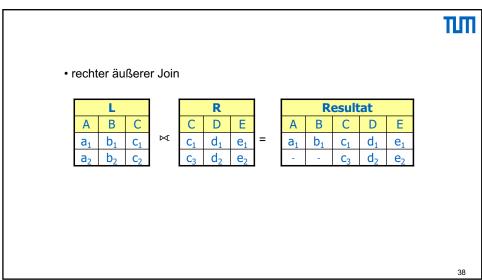


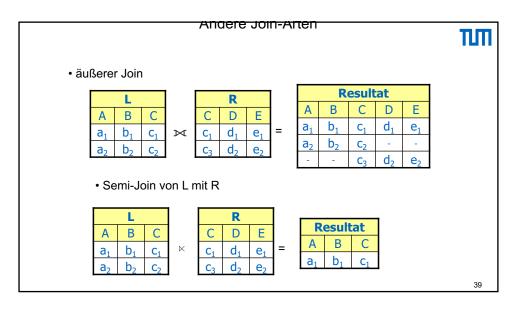


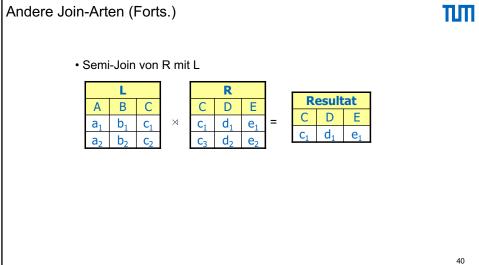


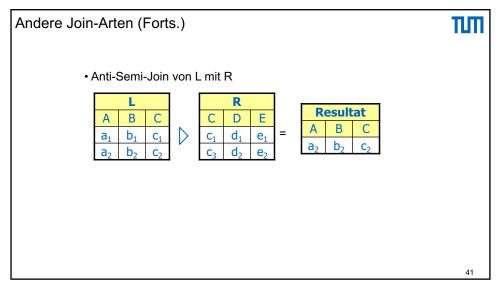


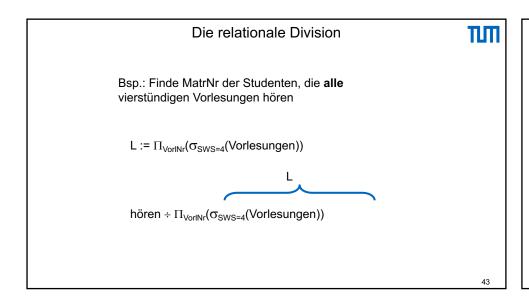


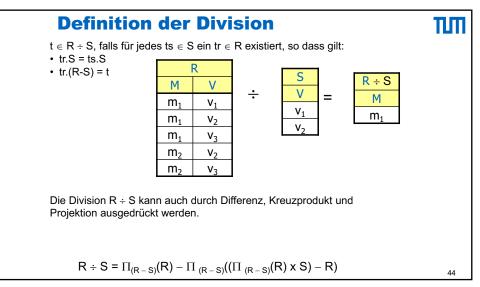












ТИП

Die relationale

Mengendurchschnitt

ПІП

Als Beispielanwendung für den Mengendurchschnitt (Operatorsymbol ∩) betrachten wir folgende Anfrage: Finde die PersNr aller C4-Professoren, die mindestens eine Vorlesung halten.

 $\Pi_{\mathsf{PersNr}}(\rho_{\mathsf{PersNr}\leftarrow\mathsf{gelesenVon}}(\mathsf{Vorlesungen})) \cap \Pi_{\mathsf{PersNr}}(\sigma_{\mathsf{Rang}=\mathsf{C4}}(\mathsf{Professoren}))$

Mengendurchschnitt nur auf zwei Argumentrelationen mit gleichem Schema anwendbar

Deshalb ist die Umbenennung des Attribute gelesenVon in PersNr in der Relation Vorlesungen notwendig

Der Mengendurchschnitt zweier Relationen $R \cap S$ kann durch die Mengendifferenz wie folgt ausgedrückt weden:

 $R \cap S = R - (R - S)$

		5041	5052	
		5052	5259	
1		prüf	en	
	MatrNr	VorlNr	PersNr	Note
	28106	5001	2126	1
	25403	5041	2125	2
	27550	4630	2137	2
_				

Studenten				
MatrNr	Name	Semester		
24002	Xenokrates	18		
25403	Jonas	12		
26120	Fichte	10		
26830	Aristoxenos	8		
27550	Schopenhauer	6		
28106	Carnap	3		
29120	Theophrastos	2		
29555	Feuerbach	2		

MatrNr	VorlNr	l
26120	5001	ĺ
27550	5001	
27550	4052	
28106	5041	
28106	5052	
28106	5216	l
28106	5259	l
29120	5001	l
29120	5041	l
29120	5049	l
29555	5022	l
25403	5022	L

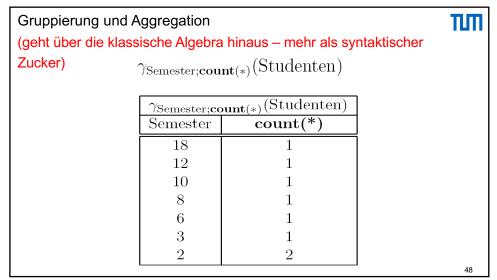
	Vorlesunge	n	
VorlNr	Titel	SWS	gelesen
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137

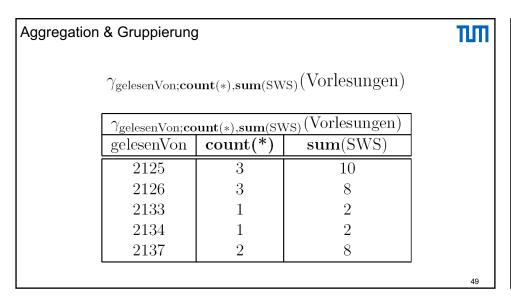
Platon Ideenlehr Aristoteles Syllogistil Wittgenstein Sprachtheo Rhetikus Planetenbewe	\ 		et Boss	e 2125	2125	rie 2126	gung 2127	setze 2127	tur 2126
Name Platon Aristoteles Wittgenstein Rhetikus Newton		ssistenten	Fachgebiet	Ideenlehre	Syllogistik	Sprachtheorie	Planetenbewegung	Keplersche Gesetze	
		As	Name	Platon	Aristoteles	Wittgenstein	Rhetikus	Newton	

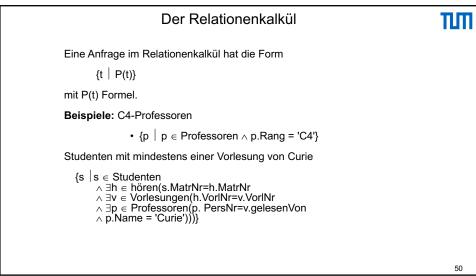
voraus	ssetzen
Vorgänger	Nachfolger
5001	5041
5001	5043
5001	5049
5041	5216
5043	5052
5041	5052
5052	5259

prüfen							
MatrNr	VorlNr	PersNr	Note				
28106	5001	2126	1				
25403	5041	2125	2				
27550	4630	2137	2				

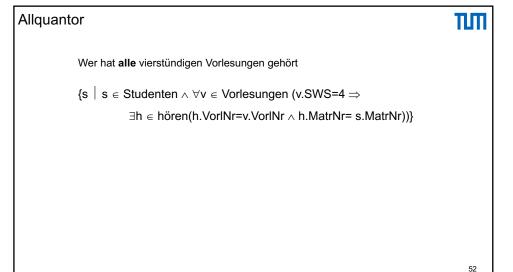
Studenten				
MatrNr	Name	Semester		
24002	Xenokrates	18		
25403	Jonas	12		
26120	Fichte	10		
26830	Aristoxenos	8		
27550	Schopenhauer	6		
28106	Carnap	3		
29120	Theophrastos	2		
29555	Feuerbach	2		


nc	ren
MatrNr	VorlNr
26120	5001
27550	5001
27550	4052
28106	5041
28106	5052
28106	5216
28106	5259
29120	5001
29120	5041
29120	5049
29555	5022
25403	5022


Vorlesungen					
VorlNr	Titel	SWS	gelesen von		
5001	Grundzüge	4	2137	l	
5041	Ethik	4	2125	l	
5043	Erkenntnistheorie	3	2126	l	
5049	Mäeutik	2	2125	l	
4052	Logik	4	2125	l	
5052	Wissenschaftstheorie	3	2126	l	
5216	Bioethik	2	2126	l	
5259	Der Wiener Kreis	2	2133	l	
5022	Glaube und Wissen	2	2134	l	
4630	Die 3 Kritiken	4	2137	l	


Assistenten						
PersINr	Name	Fachgebiet	Boss			
3002	Platon	Ideenlehre	2125			
3003	Aristoteles	Syllogistik	2125			
3004	Wittgenstein	Sprachtheorie	2126			
3005	Rhetikus	Planetenbewegung	2127			
3006	Newton	Keplersche Gesetze	2127			
3007	Spinoza	Gott und Natur	2126			

	ПГ			
VorlNr	Titel	SWS	gelesen von	-
5001	Grundzüge	4	2137	
5041	Ethik	4	2125	
5043	Erkenntnistheorie	3	2126	
5049	Mäeutik	2	2125	
4052	Logik	4	2125	
5052	Wissenschaftstheorie	3	2126	
5216	Bioethik	2	2126	
5259	Der Wiener Kreis	2	2133	
5022	Glaube und Wissen	2	2134	
4630	Die 3 Kritiken	4	2137	
				•


LieblingsProfs				
MatrNr	PersNr	ı		
26120	2125	ı		
27550	2134	ı		
26120	2137	ı		
		ı		
		ı		
		ı		
	47	ı		


```
Dieselbe Anfrage in SQL ...
                                                                            ПШ
       ... belegt die Verwandtschaft
           select s.*
           from Studenten s
           where exists (
               select h.*
               from hören h
               where h.MatrNr = s.MatrNr and exists (
                   select *
                   from Vorlesungen v
                   where v.VorlNr = h.VorlNr and exists (
                        select *
                         from Professoren p
                        where p.Name =,Curie' and
                                    p.PersNr= v.gelesenVon )))
                                                                              51
```


Definition des Tupelkalküls

Atome

s | R, mit s Tupelvariable und R Relationenname

s.A ϕ t.B, mit s und t Tupelvariablen, A und B Attributnamen und ϕ Vergleichsperator (=, \neq , \leq , ...)

s. A ϕ c mit c Konstante

Formeln

Alle Atome sind Formeln

Ist P Formel, so auch ¬P und (P)

Sind P_1 und P_2 Formeln, so auch $P_1 \land P_2$, $P_1 \lor P_2$ und $P_1 \Rightarrow P_2$

Ist P(t) Formel mit freier Variable t, so auch

 $\forall t \in R(P(t)) \text{ und } \exists t \in R(P(t))$

Sicherheit

Einschränkung auf Anfragen mit endlichem Ergebnis.

Die folgende Beispielanfrage

 $\{n \mid \neg (n \in Professoren)\}$

ist nicht sicher.

Das Ergebnis ist unendlich.

Bedingung: Ergebnis des Ausdrucks muss Teilmenge der Domäne der Formel sein.

Die Domäne einer Formel enthält

- alle in der Formel vorkommenden Konstanten
- alle Attributwerte von Relationen, die in der Formel referenziert werden

54

Der Domänenkalkül

Ein Ausdruck des Domänenkalküls hat die Form

$$\{[v_1, v_2, ..., v_n] | P(v_1, ..., v_n)\}$$

mit v₁,..., v_n Domänenvariablen und P Formel.

Beispiel: MatrNr und Namen der Prüflinge von Curie

$$\{[m, n] \mid \exists s ([m, n, s] \in Studenten \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prüfen \land \exists v, g ([m, v, p,g] \in prufen \land \exists v, g$$

$$\exists a,r, b([p, a, r, b] \in Professoren \land a = 'Curie')))$$

Prolog ~ Domänenkalkül

55

ПЛ

Sicherheit des Domänenkalküls

ПΠ

Sicherheit ist analog zum Tupelkakkül

Zum Beispiel ist

 $\{[p,n,r,o] \mid \neg ([p,n,r,o] \in Professoren)\}$

nicht sicher.

Ein Ausdruck

$$\{[x_1, x_2, ..., x_n] \mid P(x_1, x_2, ..., x_n)\}$$

 $\{[x_1,\,x_2,\,...,\,x_n]\ \big|\ P(x_1,\,x_2,\,...,\,x_n)\}$ ist sicher, falls folgende drei Bedingungen gelten:

1. Falls Tupel $[c_1, c_2, ..., c_n]$ mit Konstante c_i im Ergebnis enthalten ist, so muss jedes c_i $(1 \le i \le n)$ in der Domäne von P enthalten sein.

- 2. Für jede existenz-quantifizierte Teilformel $\exists x(P_1(x))$ muss gelten, dass P₁ nur für Elemente aus der Domäne von P₁ erfüllbar sein kann - oder evtl. für gar keine. Mit anderen Worten, wenn für eine Konstante c das Prädikat P₁(c) erfüllt ist, so muss c in der Domäne von P₁ enthalten sein.
- 3. Für jede universal-quantifizierte Teilformel $\forall x(P_1(x))$ muss gelten, dass sie dann und nur dann erfüllt ist, wenn P₁(x) für alle Werte der Domäne von P₁ erfüllt ist- Mit anderen Worten, P₁(d) muss für alle d, die nicht in der Domäne von P₁ enthalten sind, auf jeden Fall erfüllt sein.

58

Ausdruckskraft

Die drei Sprachen

- 1. relationale Algebra,
- 2. relationaler Tupelkalkül, eingeschränkt auf sichere Ausdrücke und
- 3. relationaler Domänenkalkül, eingeschränkt auf sichere Ausdrücke sind gleich mächtig

Zwei erweiterte Relationen: zum Üben bestens geeignet – sind auch auf der HyPer Webschnittstelle verfügbar

ProfessorenF						
PersNr	Name	Rang	Raum	Fakultaet		
2125	Sokrates	C4	226	Philosophie		
2126	Russel	C4	232	Philosophie		
2127	Kopernikus	C3	310	Physik		
2133	Popper	C3	52	Philosophie		
2134	Augustinus	C3	309	Theologie		
2136	Curie	C4	36	Physik		
2137	Kant	C4	7	Philosophie		

StudentenGF						
MatrNr	Name	Semester	Geschlecht	Fakultaet		
24002	Xenokrates	18	M	Philosophie		
25403	Jonas	12	W	Theologie		
26120	Fichte	10	W	Philosophie		
26830	Aristoxenos	8	M	Philosophie		
27550	Schopenhauer	6	M	Philosophie		
28106	Carnap	3	W	Physik		
29120	Theophrastos	2	M	Physik		
29555	Feuerbach	2	W	Theologie		

Beispiel-Anfragen

- · Welche Fakultät hat den höchsten Frauenanteil
- Wer hat nur Vorlesungen seiner/ihrer Fakultät gehört
- Wer hat 80% aller Vorlesungen seiner/ihrer Fakultät gehört
- Welche Professoren haben alle Studenten ihrer Fakultät unterrichtet
- ... Und vieles mehr (dann mglw. in der Klausur)